• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor marquesjadson » Sáb Fev 16, 2013 01:28

Qual das alternativas abaixo ilustra a matriz A de ordem 2x3 definida por aij = i ∙ j?
a) \begin{bmatrix} 1 & 2 & 6 \\ 2 & 4 & 12 \\ \end{bmatrix} b) \begin{bmatrix} 1&2 &3 \\ 4& 5 &6 \end{bmatrix} c) \begin{bmatrix} -2&-4 & -6\\ -1& -2 & -3 \end{bmatrix} d) \begin{bmatrix} 2 &4 &6 \\ 1&2 &3 \end{bmatrix} e) \begin{bmatrix} 1 & 1 & 1\\ 1& 2 & 3 \end{bmatrix}

Alguém estaria disposta a me ensinar como resolver matrizes.
marquesjadson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 16, 2013 01:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2
Andamento: cursando

Re: Matriz

Mensagempor e8group » Sáb Fev 16, 2013 09:34

Bom dia .


A matriz será :

A = \begin{bmatrix}
a_{11} &a_{12}  & a_{13}\\ 
 a_{21}& a_{22} &a_{23} \\    

\end{bmatrix} , a_{ij} = i\cdot j (i=1,2;j=1,2,3)

O que significa a_{ij} = i\cdot j (i=1,2;j=1,2,3) ?

Veja :

Quando i=j=1 ,


a_{11} = 1\cdot 1  =  1 .


Quando i = 1  , j= 2

a_{12} = 1 \cdot 2 = 2 ,

e assim sucessivamente para i=1,2;j=1,2,3

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor marquesjadson » Sáb Fev 16, 2013 11:49

santhiago escreveu:Bom dia .


A matriz será :

A = \begin{bmatrix}
a_{11} &a_{12}  & a_{13}\\ 
 a_{21}& a_{22} &a_{23} \\    

\end{bmatrix} , a_{ij} = i\cdot j (i=1,2;j=1,2,3)

O que significa a_{ij} = i\cdot j (i=1,2;j=1,2,3) ?

Veja :

Quando i=j=1 ,


a_{11} = 1\cdot 1  =  1 .


Quando i = 1  , j= 2

a_{12} = 1 \cdot 2 = 2 ,

e assim sucessivamente para i=1,2;j=1,2,3

Tente concluir .

a primeira linha multiplica e a segunda divide!
Cheguei a conlusão que a resposta e a letra D, está certo minha resposta ??
marquesjadson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 16, 2013 01:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2
Andamento: cursando

Re: Matriz

Mensagempor e8group » Sáb Fev 16, 2013 22:57

Na minha opinião estar errado .Talvez digitou algo errado ,se não possa ser que o gabarito estar incorreto .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor DanielFerreira » Dom Fev 17, 2013 11:40

marquesjadson

A matriz será A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}

Logo,

A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}

Como você disse, multiplicando a primeira linha 2 e dividindo a segunda por 2, teremos como resposta a opção "d".

Se, multiplicássemos a primeira linha por (- 2) e dividíssemos a segunda por (- 2), teríamos como resposta "c".

Qual a fonte dessa questão?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Matriz

Mensagempor oescolhido » Dom Fev 17, 2013 13:05

danjr5 escreveu:marquesjadson

A matriz será A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}

Logo,

A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}

Como você disse, multiplicando a primeira linha 2 e dividindo a segunda por 2, teremos como resposta a opção "d".

Se, multiplicássemos a primeira linha por (- 2) e dividíssemos a segunda por (- 2), teríamos como resposta "c".

Qual a fonte dessa questão?

Ola danjr5,

Aulas de um Projeto da UFRN.
Pelo que vejo essa questão não vai ter reposta correta, obrigado pela ajuda mais uma vez !
oescolhido
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Sáb Fev 09, 2013 17:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2 ANO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?