• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor marquesjadson » Sáb Fev 16, 2013 01:28

Qual das alternativas abaixo ilustra a matriz A de ordem 2x3 definida por aij = i ∙ j?
a) \begin{bmatrix} 1 & 2 & 6 \\ 2 & 4 & 12 \\ \end{bmatrix} b) \begin{bmatrix} 1&2 &3 \\ 4& 5 &6 \end{bmatrix} c) \begin{bmatrix} -2&-4 & -6\\ -1& -2 & -3 \end{bmatrix} d) \begin{bmatrix} 2 &4 &6 \\ 1&2 &3 \end{bmatrix} e) \begin{bmatrix} 1 & 1 & 1\\ 1& 2 & 3 \end{bmatrix}

Alguém estaria disposta a me ensinar como resolver matrizes.
marquesjadson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 16, 2013 01:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2
Andamento: cursando

Re: Matriz

Mensagempor e8group » Sáb Fev 16, 2013 09:34

Bom dia .


A matriz será :

A = \begin{bmatrix}
a_{11} &a_{12}  & a_{13}\\ 
 a_{21}& a_{22} &a_{23} \\    

\end{bmatrix} , a_{ij} = i\cdot j (i=1,2;j=1,2,3)

O que significa a_{ij} = i\cdot j (i=1,2;j=1,2,3) ?

Veja :

Quando i=j=1 ,


a_{11} = 1\cdot 1  =  1 .


Quando i = 1  , j= 2

a_{12} = 1 \cdot 2 = 2 ,

e assim sucessivamente para i=1,2;j=1,2,3

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor marquesjadson » Sáb Fev 16, 2013 11:49

santhiago escreveu:Bom dia .


A matriz será :

A = \begin{bmatrix}
a_{11} &a_{12}  & a_{13}\\ 
 a_{21}& a_{22} &a_{23} \\    

\end{bmatrix} , a_{ij} = i\cdot j (i=1,2;j=1,2,3)

O que significa a_{ij} = i\cdot j (i=1,2;j=1,2,3) ?

Veja :

Quando i=j=1 ,


a_{11} = 1\cdot 1  =  1 .


Quando i = 1  , j= 2

a_{12} = 1 \cdot 2 = 2 ,

e assim sucessivamente para i=1,2;j=1,2,3

Tente concluir .

a primeira linha multiplica e a segunda divide!
Cheguei a conlusão que a resposta e a letra D, está certo minha resposta ??
marquesjadson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Fev 16, 2013 01:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2
Andamento: cursando

Re: Matriz

Mensagempor e8group » Sáb Fev 16, 2013 22:57

Na minha opinião estar errado .Talvez digitou algo errado ,se não possa ser que o gabarito estar incorreto .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor DanielFerreira » Dom Fev 17, 2013 11:40

marquesjadson

A matriz será A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}

Logo,

A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}

Como você disse, multiplicando a primeira linha 2 e dividindo a segunda por 2, teremos como resposta a opção "d".

Se, multiplicássemos a primeira linha por (- 2) e dividíssemos a segunda por (- 2), teríamos como resposta "c".

Qual a fonte dessa questão?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Matriz

Mensagempor oescolhido » Dom Fev 17, 2013 13:05

danjr5 escreveu:marquesjadson

A matriz será A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}

Logo,

A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}

Como você disse, multiplicando a primeira linha 2 e dividindo a segunda por 2, teremos como resposta a opção "d".

Se, multiplicássemos a primeira linha por (- 2) e dividíssemos a segunda por (- 2), teríamos como resposta "c".

Qual a fonte dessa questão?

Ola danjr5,

Aulas de um Projeto da UFRN.
Pelo que vejo essa questão não vai ter reposta correta, obrigado pela ajuda mais uma vez !
oescolhido
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Sáb Fev 09, 2013 17:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: 2 ANO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59