• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz - UESB 2012

Matriz - UESB 2012

Mensagempor Janffs » Sáb Nov 17, 2012 20:26

Uma matriz quadrada A, diz - se involutiva quando = na qual é a matriz identidade de ordem n.
Nessas condições, o numero de matrizes diagonais A involutivas, de ordem 2, que existem é

01)5
02)4
03)3
04)2
04)1


Seja a matriz A = ()3x3, tal que = j+x, se i=j e j, se i j
De acordo com esses dados, pode-se afirmar que a média aritmetica das raizes da equação det(a)=0 é igual a

01)-2
02)-3
03)-4
04)-5
05)-6

OBS:
Já tentei responder mas não cheguei a resposta, se tiver um topico no site que me ajude a responder uma das questões eu agradeço!
Janffs
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Nov 15, 2012 16:03
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matriz - UESB 2012

Mensagempor Cleyson007 » Seg Nov 19, 2012 15:53

Janffs, boa tarde!

Por favor abra um tópico por questão para que possamos ajudá-lo.

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}