• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor DanielRJ » Qua Set 01, 2010 17:06

O numero de matrizes A=(A_{ij})_{2x2} onde \begin{equation*}
A_{ij} = \left\{
\begin{array}{rl}
x & \text{se } i = j\\
y & \text{se } i \neq j\\

\end{array} \right.
\end{equation*} tais que A=A^{-1}.

a)0
b)1
c)2
d)3
e)4


gostaria de saber como se faz essa questão.. porque não entendi o enunciado. eu calculo a inversa depois fico sem saber o que fazer.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor MarceloFantini » Qua Set 01, 2010 21:13

\begin {pmatrix} x & y \\ y & x \end {pmatrix} \cdot \begin {pmatrix} a & b \\ c & d \end {pmatrix} = \begin {pmatrix} 1 & 0 \\ 0 & 1 \end {pmatrix}

= \begin {pmatrix} ax+ cy & bx + dy \\ ay + cx & by + dx \end {pmatrix} = \begin {pmatrix} 1 & 0 \\ 0 & 1 \end {pmatrix}

ax + cy = 1
bx + dy = 0
ay + cx = 0
by + dx = 1

Resolva o sistema, encontre a, b, c, d em função de x e y e depois iguale a matriz inicial à inversa. Feito isso, analise as possibilidades.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matrizes

Mensagempor DanielRJ » Sex Set 03, 2010 11:46

Olá fantini agradeço pela resposta mas fiquei meio em duvida. a propriedade que voce usou ali foi:

A.A^{-1} = I_2 , até ai tudo bem mas porque a, b, c , d como variaveis? eu podia tentar criar uma inversa da matriz A tipo.. com as variaveis x e y?



Att Daniel.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor DanielRJ » Sáb Set 04, 2010 11:34

UP!
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor MarceloFantini » Sáb Set 04, 2010 12:02

As variáveis a, b, c e d são para você justamente encontrar a matriz inversa em função de x e y e verificar quantas matrizes satisfazem a relação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Matrizes

Mensagempor Douglasm » Sáb Set 04, 2010 12:06

Daniel, note que a inversa de uma matriz é dada por:

M^{-1} = \frac{1}{det\; M} . \overline{M}

Ou seja: a matriz inversa de M é dada pelo inverso do determinante de M, multiplicado pela matriz adjunta da mesma:

M^{-1} = \frac{1}{x^2 - y^2} . \begin{vmatrix} x & -y \\ -y & x\end{vmatrix}

Considerando primeiro que:

x = \frac{x}{x^2 - y^2} \;\therefore

x^2 - y^2 = 1

Temos:

y = \frac{-y}{x^2 - y^2} \;\therefore

y = -y \;\therefore

x = 1\;\mbox{ou}\; -1\;\mbox{e}\; y = 0

Agora considerando primeiro que:

y = \frac{-y}{x^2 - y^2} \;\therefore

x^2 - y^2 = -1

Encontramos de modo análogo:

x = 0 \;\mbox{e}\; y = 1\;\mbox{ou}\; -1

Isso nos dá 4 possibilidades:

- Diagonal principal composta por 1's (ou por -1's) e os outros elementos nulos.

- Diagonal secundária composta por 1's (ou por -1's) e os outros elementos nulos.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}