• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[EsPCEx Determinante/Trigonometria]

[EsPCEx Determinante/Trigonometria]

Mensagempor monicadiasf » Ter Abr 24, 2012 00:37

Olá pessoas! Sou novata por aqui.. Encontrei o site quando procurava pela resolução de alguns exercícios de matemática, além das teorias disponíveis no fórum. Espero poder ajudar sempre que possível! Minha primeira dúvida envolve o seguinte exercício:

(EsPCEx) - Considere a matriz quadrada A = \[
\left(
\begin{array}{ccc}
sen18º & cos72º \\
sen36º & cos54º \end{array}
\right)\] .
O valor do determinante de A é:

a) -2
b) -1
c) 0
d) 1
e) 2


Letra C (queria colocar oculto, mas não sei fazer isso xD)


obs1.: Não sei porque o  saiu na minha fórmula em formato Latex (ainda estou aprendendo como isso funciona). Acho que deu para entender que se trata de ângulos, né?

obs2.: Eu comecei a resolução tentando encontrar o determinante pela Regra de Sarrus e pensei em transformar todos os elementos em sen ou cos de 18º através das fórmulas:
cos(a + b) = cos a · cos b - sen a · sen b
sen(a + b) = sen a · cos b + sen b · cos a

Pois:
36º = 18º + 18º
54º = 18º + 36º
72º = 18º + 54º

Mas ficou muito grande e eu acabei me perdendo! :-D

Ajuda??

Muuuito obrigada!
monicadiasf
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Abr 20, 2012 15:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisioterapia
Andamento: cursando

Re: [EsPCEx Determinante/Trigonometria]

Mensagempor Russman » Ter Abr 24, 2012 04:18

Veja que esta matriz é quadrada, de ordem 2. Assim, seu determinante é diferença do produto dos elementos das diagonais princiapal e secundária.

Isto é:

\begin{pmatrix}
   sin(18^{\circ}) & cos(72^{\circ})  \\ 
   sin(36^{\circ}) & cos(54^{\circ}) 
\end{pmatrix}=sin(18^{\circ}).cos(54^{\circ}) - sin(36^{\circ}).cos(72^{\circ})

Agora observe que

72 + 18 = 90 = 54 + 36 . .

Assim,

cos(54^{\circ}) = cos(90^{\circ} - 36^{\circ}) = cos(90^{\circ}).cos(36^{\circ})+sin(90^{\circ}).sin(36^{\circ}) = 0.cos(36^{\circ}) + 1.sin(36^{\circ}) = sin(36^{\circ})

e

cos(72^{\circ}) = cos(90^{\circ} - 18^{\circ}) = cos(90^{\circ}).cos(18^{\circ})+sin(90^{\circ}).sin(18^{\circ}) = 0.cos(18^{\circ}) + 1.sin(18^{\circ}) = sin(18^{\circ})

Portanto,

sin(18^{\circ}).cos(54^{\circ}) - sin(36^{\circ}).cos(72^{\circ}) = sin(18^{\circ}).sin(36^{\circ}) - sin(36^{\circ}).sin(18^{\circ}) = 0
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}