• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração

Demonstração

Mensagempor Pedro2 » Sáb Mar 12, 2011 15:38

Mostre que :
a) Se A=PBP^{-1} ,então det(A) = det(B)
b) Se A é uma matriz invertível,então det(A)\neq0
Pedro2
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mar 12, 2011 15:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Demonstração

Mensagempor Guill » Sex Abr 20, 2012 16:01

a) Sejam A e B duas matrizes tais que:

A = PB{P}^{-1}


Dessa forma, temos:

{P}^{-1}A = {P}^{-1}PB{P}^{-1}

{P}^{-1}A = IB{P}^{-1}

{P}^{-1}A = B{P}^{-1}


Por igualdade, podemos aplicar as propriedades de determinantes:


det({P}^{-1}A) = det(B{P}^{-1})

det({P}^{-1}).det(A) = det(B).det({P}^{-1})

det(A) = det(B)



b) Seja M uma matriz invertível. Pela propriedade de matrizes inversas, sabe-se que:

M.{M}^{-1}=I

det(M.{M}^{-1})=det(I)

det(M).det({M}^{-1})=1


Se um dos determinantes for 0, a igualdade é inválida.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?