• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Metodo de Gauss Jordan em Matriz 4x4 (Dificil)

Metodo de Gauss Jordan em Matriz 4x4 (Dificil)

Mensagempor Rhyu » Sex Abr 06, 2012 17:26

Bom estou com dificuldades em achar a matriz inversa em matrizes 4x4 não sei por onde eu começo a zerar as colunas como nesse exercicio

I1 1 1 1I Linha 1 (1,1,1,1)
I1 2 -1 2I Linha 2 (1,2,-1,2)
I1-1 2 1I Linha 3 (1,-1,2,1)
I1 3 3 2I Linha 4 (1,3,3,2)

Como eu acho a inversa dessa aplicando o método de Gauss Jordan, gostaria de saber também qual a ordem eu devo seguir para zerar os termos.
Rhyu
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mar 23, 2012 21:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Metodo de Gauss Jordan em Matriz 4x4 (Dificil)

Mensagempor LuizAquino » Sex Abr 06, 2012 21:31

Rhyu escreveu:Bom estou com dificuldades em achar a matriz inversa em matrizes 4x4 não sei por onde eu começo a zerar as colunas como nesse exercicio

I1 1 1 1I Linha 1 (1,1,1,1)
I1 2 -1 2I Linha 2 (1,2,-1,2)
I1-1 2 1I Linha 3 (1,-1,2,1)
I1 3 3 2I Linha 4 (1,3,3,2)

Como eu acho a inversa dessa aplicando o método de Gauss Jordan, gostaria de saber também qual a ordem eu devo seguir para zerar os termos.


Se você já sabe determinar a inversa de uma matriz 3 por 3 usando o método de Gauss Jordan, então basta aplicar a mesma ideia para uma matriz 4 por 4.

Siga basicamente os seguintes passos:
1) transformar em 0 todos os elementos abaixo de a_{11} ;
2) transformar em 0 todos os elementos abaixo de a_{22} ;
3) transformar em 0 todos os elementos abaixo de a_{33} ;
4) transformar em 0 todos os elementos acima de a_{44} ;
5) transformar em 0 todos os elementos acima de a_{33} ;
6) transformar em 0 todos os elementos acima de a_{22} ;
7) transformar em 1 todos os elementos na diagonal principal.

Veja o início do processo.

Passo 1)
L_2 \leftarrow L_2 - L_1
L_3 \leftarrow L_3 - L_1
L_4 \leftarrow L_4 - L_1

\begin{array}{|rrrr|rrrr|}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 2 & -1 & 2 & 0 & 1 & 0 & 0 \\
1 & -1 & 2 & 1 & 0 & 0 & 1 & 0 \\
1 & 3 & 3  & 2 & 0 & 0 & 0 & 1
\end{array} \sim
\begin{array}{|rrrr|rrrr|}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & -1 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 2 & 2  & 1 & -1 & 0 & 0 & 1
\end{array}

Passo 2)
L_3 \leftarrow L_3 + 2L_2
L_4 \leftarrow L_4 - 2L_2

\begin{array}{|rrrr|rrrr|}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & -1 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 2 & 2  & 1 & -1 & 0 & 0 & 1
\end{array} \sim
\begin{array}{|rrrr|rrrr|}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & -3 & 2 & -3 & 2 & 1 & 0 \\
0 & 0 & 6  & -1 & 1 & -2 & 0 & 1
\end{array}

Passo 3)
L_4 \leftarrow L_4 + 2L_3

\begin{array}{|rrrr|rrrr|}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & -3 & 2 & -3 & 2 & 1 & 0 \\
0 & 0 & 6  & -1 & 1 & -2 & 0 & 1
\end{array} \sim
\begin{array}{|rrrr|rrrr|}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & -3 & 2 & -3 & 2 & 1 & 0 \\
0 & 0 & 0  & 3 & -5 & 2 & 2 & 1
\end{array}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)