• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Ter Fev 07, 2012 16:57

Não consegui resolver o seguinte sistema
obs: Pelo método de Gauss Jordan

2x + y - 2z = 10
3x + 2y + 2z = 1
5x + 4y + 3z = 4
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor LuizAquino » Ter Fev 07, 2012 19:24

Claudin escreveu:Não consegui resolver o seguinte sistema
obs: Pelo método de Gauss Jordan

2x + y - 2z = 10
3x + 2y + 2z = 1
5x + 4y + 3z = 4


Matriz ampliada:
\begin{bmatrix}
2 & 1 & -2 & 10 \\
3 & 2 & 2 & 1 \\
5 & 4 & 3 & 4
\end{bmatrix}

1º Passo) Operações:
L_2 \leftarrow 2L_2 - 3L_1

L_3 \leftarrow 2L_3 - 5L_1

\begin{bmatrix}
2 & 1 & -2 & 10 \\
0 & 1 & 10 & -28 \\
0 & 3 & 16 & -42
\end{bmatrix}

2º Passo) Operação:
L_3 \leftarrow L_3 - 3L_2

\begin{bmatrix}
2 & 1 & -2 & 10 \\
0 & 1 & 10 & -28 \\
0 & 0 & -14 & 42
\end{bmatrix}

3º Passo) Operações:
L_1 \leftarrow 7L_1 - L_3

L_2 \leftarrow 14L_2 + 10L_3

\begin{bmatrix}
14 & 7 & 0 & 28 \\
0 & 14 & 0 & 28 \\
0 & 0 & -14 & 42
\end{bmatrix}

4º Passo) Operação:
L_1 \leftarrow 2L_1 - L_2

\begin{bmatrix}
28 & 0 & 0 & 28 \\
0 & 14 & 0 & 28 \\
0 & 0 & -14 & 42
\end{bmatrix}

5º Passo) Operações:
L_1 \leftarrow \frac{1}{28}L_1

L_2 \leftarrow \frac{1}{14}L_2

L_3 \leftarrow -\frac{1}{14}L_3

\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -3
\end{bmatrix}

Solução: x = 1, y = 2 e z = -3.

Observação

Eu recomendo que você assista as seguintes videoaulas do canal do Nerckie:
  • Matemática - Aula 23 - Sistemas Lineares - Parte 4
  • Matemática - Aula 23 - Sistemas Lineares - Parte 5
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz

Mensagempor Claudin » Qua Fev 08, 2012 02:41

Esse método pelo qual você explicou não seria o escalonamento?

O método de Gauss Jordan que aprendi seria transformar em "pivôs", no caso a¹¹, a²² e o a³³, no caso esses 3 valores sendo igual a 1

Aí sim, efetuar as operações elementares, para zerar as colunas e linhas.

Claro seguindo a ordem se o pivô for a¹¹, no caso eu buscaria zerar a primeira coluna, e assim respectivamente.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor LuizAquino » Qua Fev 08, 2012 09:53

Claudin escreveu:Esse método pelo qual você explicou não seria o escalonamento?

Não. No método de escalonamento (ou Método de Gauss), o objetivo é deixar a matriz do sistema na forma triangular.

Isto é, deixar a matriz no formato:

\begin{bmatrix}a_{11}^\prime & a_{12}^\prime & a_{13}^\prime \\ 0 & a_{22}^\prime & a_{23}^\prime \\ 0 & 0 & a_{33}^\prime\end{bmatrix}

Por outro lado, no método Gauss-Jordan o objetivo é deixar a matriz do sistema na forma diagonal.

Isto é, deixar a matriz no formato:

\begin{bmatrix}a_{11}^\prime & 0 & 0\\ 0 & a_{22}^\prime & 0 \\ 0 & 0 & a_{33}^\prime\end{bmatrix}

Claudin escreveu:O método de Gauss Jordan que aprendi seria transformar em "pivôs", no caso a¹¹, a²² e o a³³, no caso esses 3 valores sendo igual a 1.

Aí sim, efetuar as operações elementares, para zerar as colunas e linhas.


Essa é uma das maneiras de se fazer. Mas isso provavelmente fará com que você precise trabalhar com frações durante toda a resolução do problema.

Note que eu também transformei os pivôs em 1, entretanto apenas no final do processo. Com isso, eu não precisei trabalhar com frações durante a resolução (o que economizou bastante tempo).

Em resumo, há duas estratégias igualmente válidas de se resolver:
(i) transformar os pivôs em 1 antes de zerar os outros valores;
(ii) transformar os pivôs em 1 depois de zerar os outros valores.

Que estratégia você irá usar depende de sua escolha.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz

Mensagempor Claudin » Qui Fev 09, 2012 15:07

Correto Luiz Aquino.

É que no exercício pediu o método ao qual eu citei, pode deixar que já consegui chegar no resultado.

obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D