por ilovecer » Seg Dez 05, 2011 17:39
Opa!
Estou tendo encrencas com um tipo de exercicio aqui.
Seja T uma transformacao linear (R2 -> R2) tal que T reflete o R2,ortogonalmente, em relação a uma reta R.Sabendo que v1=(1,-3) é um autovetor de T com autovalor 1, ache T(x,y).
Bom o que eu tentei fazer o é o seguinte.Eu sei que todos os vetores da forma k(v1)=k(1,-3) permancem inalterados nesta transformação linear, ou seja , são os vetores sob a reta y=-(1/3)x.(Com isso conseguimos achar os autovalores correspodem ao autovalor 1)
Eu sei ainda que a reta perpendicular a y=-(1/3)x na origem tem seus vetores levados a 0 , ou seja , T(v2)=0 , onde v2 está contido na reta y=3x.(com isso descobrimos um autovalor 0 , com autovetores pertencendo a reta y=3x)
O meu problema é pra resolver , não tenho gabarito e não tenho a menor confiança no resultado que achei.
Grato por qualquer ajuda.
Ps:Perdão por não usar o latex , mas creio que esteja bem legível.
-
ilovecer
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Fev 27, 2011 16:14
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Seg Dez 05, 2011 21:59
ilovecer escreveu:Seja T uma transformacao linear (R2 -> R2) tal que T reflete o R2, ortogonalmente, em relação a uma reta R. Sabendo que v1=(1,-3) é um autovetor de T com autovalor 1, ache T(x,y).
Como T é uma transformação linear e uma reflexão em relação a uma reta r, então r deve passar na origem.
Note que se (a, b) é o vetor diretor da reta r, então temos que T(a, b) = (a, b), já que T é uma reflexão em relação a r. Note que das informações do exercício, temos que (a, b) = (1, -3).
Por outro lado, se (c, d) é o vetor diretor da reta que passa pela origem e é perpendicular a r, então temos que T(c, d) = -(c, d), novamente pelo fato de T ser uma reflexão em relação a r. Desse modo, temos que (c, d) é um autovetor de T associado ao autovalor -1.
Agora, pense no seguinte: se (1, -3) é o vetor diretor da reta r, então qual deve ser o vetor (c, d)?
Após responder essa pergunta, você pode determinar a matriz M de T lembrando que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por ilovecer » Seg Dez 05, 2011 22:46
Caro Luiz,
Já sei onde errei.Eu li PROJEÇÃO ao invez de REFLEXÃO.Então eu estava levando o vetor diretor (c,d) da reta perpendicular à r para a origem (0,0) !!!
Me custou 2,5 pontos na prova essa desatenção...
Agradeço muito a sua ajuda mestre!
-
ilovecer
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Fev 27, 2011 16:14
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [algebra linear transformações lineares] operadores lineares
por Ramses » Qui Mar 31, 2016 17:31
- 1 Respostas
- 5378 Exibições
- Última mensagem por adauto martins

Sáb Abr 02, 2016 13:05
Álgebra Linear
-
- Sistemas Lineares
por Cleyson007 » Sáb Mai 03, 2008 01:50
- 3 Respostas
- 6924 Exibições
- Última mensagem por admin

Dom Mai 04, 2008 13:51
Sistemas de Equações
-
- Sistemas Lineares
por gustavowelp » Sáb Jun 26, 2010 17:05
- 3 Respostas
- 7211 Exibições
- Última mensagem por Douglasm

Dom Jun 27, 2010 09:09
Sistemas de Equações
-
- Sistemas lineares
por Catriane Moreira » Seg Set 06, 2010 18:32
- 1 Respostas
- 2406 Exibições
- Última mensagem por Molina

Seg Set 06, 2010 19:13
Sistemas de Equações
-
- sistemas lineares
por angeloka » Sáb Nov 27, 2010 17:59
- 1 Respostas
- 2535 Exibições
- Última mensagem por Neperiano

Sáb Nov 27, 2010 19:02
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.