por vanessafey » Qua Set 07, 2011 21:49
Preciso verificar geometricamente e ilustrar graficamente com exemplos as seguintes propriedades do determinante para matrizes 2X2 e 3X3:
(i) Se B é uma matriz obtida a partir de A multiplicando uma linha de A por um escalar ?>0; então

Segue o raciocínio...
Para matrizes R^2xR^2

[/tex]
Note que a primeira linha de B é o dobro da primeira linha de A.
|det(B)|=|6-8|=2
|det(A)|=|3-4|=1
Assim, |det(B)|=2|det(A)|
Geometricamente, significa que a área do paralelogramo formada pelos vetores

dobrou, pois o vetor u dobrou o comprimento. Ou seja, se uma linha (ou coluna) de uma matriz foi multiplicada por uma constante positiva ?, seu determinante também fica multiplicado por essa constante.
O significado geométrico para matrizes 2X2, é que a área do paralelogramo formada por seus vetores coluna (ou linha) fica multiplicado por essa constante ?.
SERIA ISSO???
-
vanessafey
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Jun 24, 2011 13:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sáb Set 10, 2011 12:51
vanessafey escreveu:O significado geométrico para matrizes 2X2, é que a área do paralelogramo formada por seus vetores coluna (ou linha) fica multiplicado por essa constante ?.
Sim.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- propriedades de raiz
por theSinister » Ter Jun 21, 2011 22:04
- 10 Respostas
- 6379 Exibições
- Última mensagem por theSinister

Qua Jun 22, 2011 16:16
Álgebra Elementar
-
- propriedades dos radicais
por beatriz gomes » Qua Set 07, 2011 20:11
- 1 Respostas
- 2284 Exibições
- Última mensagem por MarceloFantini

Qua Set 07, 2011 21:02
Álgebra Elementar
-
- Propriedades dos determinates
por panicox » Sex Set 14, 2018 02:31
- 3 Respostas
- 12375 Exibições
- Última mensagem por Gebe

Sex Set 14, 2018 13:46
Matrizes e Determinantes
-
- Potenciação Propriedades
por anneliesero » Seg Out 01, 2012 17:24
- 1 Respostas
- 1851 Exibições
- Última mensagem por Cleyson007

Seg Out 01, 2012 18:29
Álgebra Elementar
-
- Propriedades do Produtório
por Jhenrique » Qui Jan 17, 2013 09:07
- 1 Respostas
- 4015 Exibições
- Última mensagem por Russman

Qui Jan 17, 2013 17:42
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.