• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinantes] Inversão de Matrizes

[Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sex Set 02, 2011 22:52

Baixei uma apostila do cursinho da UFSC e não consigo resolver esta inversão de matrizes. O gabarito apresenta a resposta(-48) e eu sempre encontro 0.

determinantes.png
determinantes.png (4.89 KiB) Exibido 3452 vezes


Comecei da seguinte forma:

2|+M_1_1 |-3|-M_1_2 |+4|+M_1_3 |
Editado pela última vez por vanessafey em Sáb Set 03, 2011 00:21, em um total de 1 vez.
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor MarceloFantini » Sáb Set 03, 2011 00:03

Vanessa, não entendo seu desenvolvimento. Pode explicar um pouco mais?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 00:12

Desculpe-me postei o anexo errado, lógico que fica incompreensível...

determinantes.png
determinantes.png (4.89 KiB) Exibido 3455 vezes


Tentei resolver por cofator relativo à primeira linha.
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 16:18

Ainda não consegui responder a questão...

Segue o meu raciocínio... usando Cofator em função da primeira linha...

|A|=2aA_1_1+ (-3c) A_1_2+4hA_1_3
|A|=2|+M_1_1 |+ (-3c)|-M_1_2 |+4h|+M_1_3 |
|A|=2(-12+12)+3(8-8)+4(-6+6)=0
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Determinantes] Inversão de Matrizes

Mensagempor MarceloFantini » Sáb Set 03, 2011 16:27

Não é necessário calcular o determinante. Lembre-se que determinante é uma função que tem a propriedade de que se uma constante multiplica uma linha ou coluna inteira, podemos multiplicar o determinante inteiro por essa constante. Assim, seja A essa matriz. Sabemos \det A = 2. Com a nova matriz A', temos que \det A' = 2 \cdot (-3) \cdot 4 \cdot \det A = -24 \cdot \det A = -48
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Determinantes] Inversão de Matrizes

Mensagempor vanessafey » Sáb Set 03, 2011 16:35

Muito obrigada! Nessas horas eu percebo como consigo complicar algo simples!

Vou continuar os exercícios...
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.