• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ PA ] Encontrar termos

[ PA ] Encontrar termos

Mensagempor GrazielaSilva » Qui Out 04, 2012 12:42

Obter 3 números em PA de modo que sua soma seja 18 e seu produto 66.
GrazielaSilva
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 27, 2012 12:56
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [ PA ] Encontrar termos

Mensagempor young_jedi » Qui Out 04, 2012 13:35

veja que uma PA tem os seguintes termos

a-r,a,a+r

onde a é o termo central e r é a razão

somando os termos

a-r+a+a+r=18
3a=18

dai voce tira o valor de a, depois aplicando o produto dos termos voce encontra a razão r.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [ PA ] Encontrar termos

Mensagempor GrazielaSilva » Sex Out 05, 2012 01:22

Obrigada! Tentarei ;)
GrazielaSilva
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 27, 2012 12:56
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.