• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de P.A.

Questão de P.A.

Mensagempor mushthielv » Seg Ago 17, 2009 12:21

Não consegui resolver a seguinte questão:

(MACKENZIE - SP) A soma dos 2n primeiros termos da sequëncia (2,3,6,7,10,11,14,15,...) é 410. Então n vale?
mushthielv
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Ago 17, 2009 12:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de P.A.

Mensagempor Molina » Seg Ago 17, 2009 23:04

mushthielv escreveu:Não consegui resolver a seguinte questão:

(MACKENZIE - SP) A soma dos 2n primeiros termos da sequëncia (2,3,6,7,10,11,14,15,...) é 410. Então n vale?

Questão interessantíssima! :-O

Aqui ainda não saiu...
Mas note que podemos dividir esta P.A em duas de razão 4: (2,6,10,14,...) e (3,7,11,15,...)
Acho que é aí que está o truque.

Hoje ainda sai, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Questão de P.A.

Mensagempor Elcioschin » Ter Ago 18, 2009 08:54

O Molina "matou a charada":

1ª PA ----> a1 = 2 , r = 4 -----> an = 2 + (n - 1)*4 ----> an = 4n - 2 ----> Sn = (2 + 4n - 2)*n/2 -----> Sn = 2n²

2ª PA ----> a'1 = 3 , r' = 4 ----> a'n = 3 + (n - 1)*4 -----> a'n = 4n - 1 ----> S'n = (3 + 4n - 1)*n/2 ----> S'n = 2n² + n

Sn + S'n = 410 ----> 2n² + 2n² + n = 410 ----> 4n² + n - 410 = 0

Bhaskara ----> Delta = b² - 4ac ----> D = 1² +4*4*410 ----> D = 6561 ----> VD = 81

Raízes ----> n' = (- 1 - 81)/2*4 ----> n' = - 82/8 -----> Não serve (Além de negativo não é inteiro)

n" = (- 1 + 81)/2*4 -----> n" = 10 -----> serve

Solução ----> n = 10
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.