• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG/Trigonometria

PG/Trigonometria

Mensagempor jessicaccs » Ter Mar 08, 2011 19:55

Boa noite,
gostaria de ajuda nessa questão:





As alternativas são:
a) 4 b) 5 c) 6 d) 7 e) 8


Tentei resolvê-la através da propriedade da PG que diz que um termo médio de dois equidistantes deste é a média geométrica dos dois números.
Entretanto, não consegui resolver.

Obrigada,
Jéssica.
jessicaccs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Out 13, 2009 19:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Efomm
Andamento: cursando

Re: PG/Trigonometria

Mensagempor LuizAquino » Qua Mar 09, 2011 21:28

Sabemos que em uma p.g. é válido que \frac{a_2}{a_1} = \frac{a_3}{a_2}, com a_1 e a_2 não nulos. Disso, nós obtemos que:

\frac{\cos x}{\sin x} = \frac{\tan x}{\cos x}

\frac{\cos x}{\sin x} = \frac{\sin x}{\cos^2 x}

\sin^2 x = \cos^3 x (vamos identificar essa equação como (a))

1 - \cos^2 x = \cos^3 x

Dividindo tudo por \cos^2 x:

\frac{1}{\cos^2 x} - 1 = \cos x

\frac{1}{\cos^2 x} = \cos x + 1 (vamos identificar essa equação como (b))

Sabemos que o termo geral de uma p.g. é dado por a_n = a_1 q^{n-1}, onde q é a razão. Desse modo, temos que a_n = \sin x \left(\frac{\cos x}{\sin x}\right)^{n-1}.

Nós queremos determinar n tal que \sin x \left(\frac{\cos x}{\sin x}\right)^{n-1} = 1 + \cos x.

Note que para n=8, nós temos que:

a_8 = \sin x \left(\frac{\cos x}{\sin x}\right)^{8-1}

a_8 = \sin x \left(\frac{\cos^6 x \cdot \cos x}{\sin^4 x\cdot \sin^2 x \cdot \sin x}\right)

Usando a equação (a) e fazendo as simplificações necessárias, nós obtemos:

a_8 = \frac{1}{\cos^2 x}

Agora, usando a equação (b) concluímos que o número n procurado é 8.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: PG/Trigonometria

Mensagempor jessicaccs » Qua Mar 09, 2011 22:18

Obrigada pela resolução, Luiz.
Só gostaria que você tirasse uma dúvida que fiquei.
Por que você adotou o número 8 dentre tantos outros que poderiam ser?
Obrigada.
jessicaccs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Out 13, 2009 19:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Efomm
Andamento: cursando

Re: PG/Trigonometria

Mensagempor LuizAquino » Qua Mar 09, 2011 23:31

jessicaccs escreveu:Por que você adotou o número 8 dentre tantos outros que poderiam ser?

Nesse caso eu adotei n = 8 devido as opções dadas no gabarito. Mas, poderíamos ter feito de outra maneira.

Nós queremos determinar n tal que \sin x \left(\frac{\cos x}{\sin x}\right)^{n-1} = 1 + \cos x.

Lembrando-se das equações (a) e (b), nós podemos armar a seguinte equação exponencial (na qual a base é \cos x):
(\cos x)^{\frac{3}{2}} \left[\frac{\cos x}{(\cos x)^{\frac{3}{2}}}\right]^{n-1} = (\cos x)^{-2}

(\cos x)^{\frac{3}{2} - \frac{(n-1)}{2}} = (\cos x)^{-2}

\frac{3}{2} - \frac{(n-1)}{2} = -2

n = 8
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: PG/Trigonometria

Mensagempor jessicaccs » Sex Mar 11, 2011 16:22

Obrigada, Luiz Aquino. ;)
jessicaccs
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Out 13, 2009 19:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Efomm
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D