• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de concurso

Questão de concurso

Mensagempor antonybel » Seg Jul 18, 2022 22:41

Em uma autoestrada há cinco saídas. As distâncias entre duas saídas consecutivas são todas iguais e a distância entre a segunda e a quarta saída é 36 km. A distância entre a primeira e a quinta saída, em quilômetros, é:
antonybel
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sex Nov 11, 2011 10:12
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de concurso

Mensagempor DanielFerreira » Sáb Set 03, 2022 14:08

Olá antonybel!

antonybel escreveu:Em uma autoestrada há cinco saídas. As distâncias entre duas saídas consecutivas são todas iguais e a distância entre a segunda e a quarta saída é 36 km. A distância entre a primeira e a quinta saída, em quilômetros, é:


Sejam \mathtt{s_1}, \mathtt{s_2}, \mathtt{s_3}, \mathtt{s_4} e \mathtt{s_5} as saídas da autoestrada. De acordo com o enunciado, \mathbf{s_4 - s_2 = 36}. Posto isto, determinemos \mathtt{s_5 - s_1}. Segue:



\\ \mathtt{s_4 - s_2 = 36} \\ \mathtt{\left ( s_1 + 3r \right ) - \left ( s_1 + r \right ) = 36} \\ \mathtt{s_1 + 3r - s_1 - r = 36} \\ \mathtt{2r = 36} \\ \mathtt{\boxed{\mathtt{r = 18 \, km}}}

Logo,

\\ \mathtt{s_5 - s_1 =} \\ \mathtt{\left \( s_1 + 4r \right \) - s_1 =} \\ \mathtt{s_1 + 4r - s_1 =} \\ \mathtt{4r =} \\ \mathtt{4 \cdot 18 =} \\ \mathtt{\boxed{\boxed{\mathtt{72 \, km}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1729
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59