• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Qui Mai 27, 2021 17:28

(ita-1957)os numeros a,b,c satisfazem a relaçao a+{b}^{2}=1-c.
que condiçoes deve satisfazer o numero a,para que os logaritmos desses numeros
a,b,c,nessa ordem,formem uma progressao geometrica?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qui Mai 27, 2021 17:42

soluçao

para se ter uma P.G na ordem apresentada os logaritmos devem satisfazer

log(b)=p.log(a)

log(c)=p.log(b),
onde p um racional(Q)

o que implica em

log(b)/log(c)=log(a)/log(b)

log(a)=(log(b))^{2}/log(c)=log({b}^{2})/log(c)

log(a)={log_{c}({b}^{2}})
=1/log_{b^{2}(c)

\Rightarrow a\succ0,0\prec b\neq1,0\prec c\neq1

voltando a relaçao dada teremos

a=1-{b}^{2}-c=1-({b}^{2}+c)
portanto

0\prec a=1-(b^2+c)\prec 1

0\prec a \prec 1...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}