• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG Crescente

PG Crescente

Mensagempor Lana Brasil » Seg Mai 27, 2019 21:21

Boa Noite.
Estou com dúvidas na questão abaixo. Poderiam me ajudar, por favor?
Obrigada

Considere a progressão geométrica crescente em que a2+a5=72 e a4+a7=288. Calcule a soma dos 10 primeiros termos dessa progressão.
Não tenho o Gabarito.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressões] PG Crescente

Mensagempor Baltuilhe » Seg Mai 27, 2019 23:49

Boa noite!

Dado:
\begin{cases}a_2+a_5=72\\a_4+a_7=288\end{cases}

Desenvolvendo o termo geral a_n=a_1\cdot q^{n-1}.
Primeira equação:
a_1\cdot q+a_1\cdot q^4=72

Segunda equação:
a_1\cdot q^3+a_1\cdot q^6=288

Agora, dividindo a segunda pela primeira:
\dfrac{a_1\cdot q^3+a_1\cdot q^6}{a_1\cdot q+a_1\cdot q^4}=\dfrac{288}{72}\\\dfrac{a_1\cdot q^3\cdot\left(1+q^3\right)}{a_1\cdot q\cdot\left(1+q^3\right)}=4\\\dfrac{\cancel{a_1}\cdot q^3\cdot\cancel{\left(1+q^3\right)}}{\cancel{a_1}\cdot q\cancel{\cdot\left(1+q^3\right)}}=4\\\dfrac{q^3}{q}=4\\q^2=4\\q=\sqrt{4}\\q=\pm 2\\\boxed{q=2}

Conhecida a razão, vamos voltar para a primeira equação:
a_1\cdot q+a_1\cdot q^4=72\\
a_1\cdot q\cdot\left(1+q^3\right)=72\\
a_1\cdot 2\cdot\left(1+2^3\right)=72\\
a_1\cdot 2\cdot 9=72\\
a_1=\dfrac{72}{18}=4

Agora que temos o primeiro termo e a razão:
S_n=a_1\cdot\dfrac{q^n-1}{q-1}\\S_{10}=4\cdot\dfrac{2^{10}-1}{2-1}\\S_{10}=4\cdot\dfrac{1\,024-1}{1}=4\cdot 1\,023\\\boxed{S_{10}=4\,092}

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: [Progressões] PG Crescente

Mensagempor Lana Brasil » Qua Mai 29, 2019 09:45

Muito obrigada pela resposta.
Não consegui finalizar porque não pensei em dividir um pelo outro.


Baltuilhe escreveu:Boa noite!

Dado:
\begin{cases}a_2+a_5=72\\a_4+a_7=288\end{cases}

Desenvolvendo o termo geral a_n=a_1\cdot q^{n-1}.
Primeira equação:
a_1\cdot q+a_1\cdot q^4=72

Segunda equação:
a_1\cdot q^3+a_1\cdot q^6=288

Agora, dividindo a segunda pela primeira:
\dfrac{a_1\cdot q^3+a_1\cdot q^6}{a_1\cdot q+a_1\cdot q^4}=\dfrac{288}{72}\\\dfrac{a_1\cdot q^3\cdot\left(1+q^3\right)}{a_1\cdot q\cdot\left(1+q^3\right)}=4\\\dfrac{\cancel{a_1}\cdot q^3\cdot\cancel{\left(1+q^3\right)}}{\cancel{a_1}\cdot q\cancel{\cdot\left(1+q^3\right)}}=4\\\dfrac{q^3}{q}=4\\q^2=4\\q=\sqrt{4}\\q=\pm 2\\\boxed{q=2}

Conhecida a razão, vamos voltar para a primeira equação:
a_1\cdot q+a_1\cdot q^4=72\\
a_1\cdot q\cdot\left(1+q^3\right)=72\\
a_1\cdot 2\cdot\left(1+2^3\right)=72\\
a_1\cdot 2\cdot 9=72\\
a_1=\dfrac{72}{18}=4

Agora que temos o primeiro termo e a razão:
S_n=a_1\cdot\dfrac{q^n-1}{q-1}\\S_{10}=4\cdot\dfrac{2^{10}-1}{2-1}\\S_{10}=4\cdot\dfrac{1\,024-1}{1}=4\cdot 1\,023\\\boxed{S_{10}=4\,092}

Espero ter ajudado!
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59