• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG Crescente

PG Crescente

Mensagempor Lana Brasil » Seg Mai 27, 2019 21:21

Boa Noite.
Estou com dúvidas na questão abaixo. Poderiam me ajudar, por favor?
Obrigada

Considere a progressão geométrica crescente em que a2+a5=72 e a4+a7=288. Calcule a soma dos 10 primeiros termos dessa progressão.
Não tenho o Gabarito.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Progressões] PG Crescente

Mensagempor Baltuilhe » Seg Mai 27, 2019 23:49

Boa noite!

Dado:
\begin{cases}a_2+a_5=72\\a_4+a_7=288\end{cases}

Desenvolvendo o termo geral a_n=a_1\cdot q^{n-1}.
Primeira equação:
a_1\cdot q+a_1\cdot q^4=72

Segunda equação:
a_1\cdot q^3+a_1\cdot q^6=288

Agora, dividindo a segunda pela primeira:
\dfrac{a_1\cdot q^3+a_1\cdot q^6}{a_1\cdot q+a_1\cdot q^4}=\dfrac{288}{72}\\\dfrac{a_1\cdot q^3\cdot\left(1+q^3\right)}{a_1\cdot q\cdot\left(1+q^3\right)}=4\\\dfrac{\cancel{a_1}\cdot q^3\cdot\cancel{\left(1+q^3\right)}}{\cancel{a_1}\cdot q\cancel{\cdot\left(1+q^3\right)}}=4\\\dfrac{q^3}{q}=4\\q^2=4\\q=\sqrt{4}\\q=\pm 2\\\boxed{q=2}

Conhecida a razão, vamos voltar para a primeira equação:
a_1\cdot q+a_1\cdot q^4=72\\
a_1\cdot q\cdot\left(1+q^3\right)=72\\
a_1\cdot 2\cdot\left(1+2^3\right)=72\\
a_1\cdot 2\cdot 9=72\\
a_1=\dfrac{72}{18}=4

Agora que temos o primeiro termo e a razão:
S_n=a_1\cdot\dfrac{q^n-1}{q-1}\\S_{10}=4\cdot\dfrac{2^{10}-1}{2-1}\\S_{10}=4\cdot\dfrac{1\,024-1}{1}=4\cdot 1\,023\\\boxed{S_{10}=4\,092}

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: [Progressões] PG Crescente

Mensagempor Lana Brasil » Qua Mai 29, 2019 09:45

Muito obrigada pela resposta.
Não consegui finalizar porque não pensei em dividir um pelo outro.


Baltuilhe escreveu:Boa noite!

Dado:
\begin{cases}a_2+a_5=72\\a_4+a_7=288\end{cases}

Desenvolvendo o termo geral a_n=a_1\cdot q^{n-1}.
Primeira equação:
a_1\cdot q+a_1\cdot q^4=72

Segunda equação:
a_1\cdot q^3+a_1\cdot q^6=288

Agora, dividindo a segunda pela primeira:
\dfrac{a_1\cdot q^3+a_1\cdot q^6}{a_1\cdot q+a_1\cdot q^4}=\dfrac{288}{72}\\\dfrac{a_1\cdot q^3\cdot\left(1+q^3\right)}{a_1\cdot q\cdot\left(1+q^3\right)}=4\\\dfrac{\cancel{a_1}\cdot q^3\cdot\cancel{\left(1+q^3\right)}}{\cancel{a_1}\cdot q\cancel{\cdot\left(1+q^3\right)}}=4\\\dfrac{q^3}{q}=4\\q^2=4\\q=\sqrt{4}\\q=\pm 2\\\boxed{q=2}

Conhecida a razão, vamos voltar para a primeira equação:
a_1\cdot q+a_1\cdot q^4=72\\
a_1\cdot q\cdot\left(1+q^3\right)=72\\
a_1\cdot 2\cdot\left(1+2^3\right)=72\\
a_1\cdot 2\cdot 9=72\\
a_1=\dfrac{72}{18}=4

Agora que temos o primeiro termo e a razão:
S_n=a_1\cdot\dfrac{q^n-1}{q-1}\\S_{10}=4\cdot\dfrac{2^{10}-1}{2-1}\\S_{10}=4\cdot\dfrac{1\,024-1}{1}=4\cdot 1\,023\\\boxed{S_{10}=4\,092}

Espero ter ajudado!
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 72
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}