• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressões

progressões

Mensagempor solon » Qui Jul 23, 2015 17:57

seja (a1, a2, ..., an) uma progressão geométrica com um número ímpar de termos e razão q>0. O produto de seus termos é igual a 2^25 e o termo do meio é 2^5. Se a soma dos (n-1) primeiros termos é igual a 2(1+q)(1+q^2), então :
a) a1 + q =16
b) a1 + q =12
c) a1 + q = 10
d) a1 + q + n = 20
e) a1 + q + n = 11
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor solon » Qui Jul 30, 2015 20:03

Como n é ímpar, então o termo do meio é ? a?_((n+1)/2).Digite a equação aqui.
A P.G. proposta é do tipo a_(1,) a_2, ..., a_((n+1)/2) , ..., a_n), (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:
a_((n+1)/2 =) ?(a_1.a_(n ) ) ? a_1.a_n =??(? a?_((n+1)/2) )^2 ? ? a_1.a_n = (? 2 ?^5 )^2 ? a_1.a_n = 2^10
O produto dos n primeiros termos da P.G. (a_(1,) a_2, ..., a_((n+1)/2) , ..., n ), é dado por P_n= ?((?a_(1 ).a_n )?^n ) .
Substituindo P_n por 2^25 e a_1. a_n por 2^10 , vem:
P_n = ?((?a_(1 ).a_n)?^n ) ?2^25 = ?((??2^10?_ )?^n ) ? 2^25 = ?((??2^n?_ )?^10 ) ? 2^25 =? (2 ?^n )^5 ?
2^25 = 2^5n ? 5n = 25 ? n = 5
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ? ( 1 + q ) ? (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
a_3 = a_1? q^2 ? a_1 = a_3/q^2 ? a_(1 )= 32/q^2
Segue que:
S_4 = (a_1 ? ( q^4 -1 ))/(( q-1 )) ? S_4 = (32 ? [(q^2 )^2 -1 ])/(q^2 ? (q-1)) ? S_4 = (32 ?(q^2-1) ? (q^2-1))/(q^2 ? (q-1) ) ? S_4 = (32 ?(q^2+ 1) ? (q+1) ? (q-1))/(q^2 ? (q-1) )
Substituindo S_4 por 2? (1+q)? (1+ q^2 ), vem:
2 ? (1+q)? (1+q^2 ) = (32 ? (q^2+ 1) ? (q + 1) ? (q - 1))/(q^2 ? (q -1) ) ? 32/q^2 = 2 ? q^2 = 16 ? q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por: a_1 = 32/q^2 ? a_1 = 32/q^2 ? a_1 = 32/4^2 ? a_1 = 2
Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor solon » Sáb Ago 01, 2015 03:48

Como n é ímpar, então o termo do meio é {a}_{\frac{n+1}{2}}.
A P.G. proposta é do tipo ({a}_{1},{a}_{2},...,{a}_{\frac{n+1}{2}},...,{a}_{n}), (com razão q > 0.
Aplicando uma das propriedades da P.G., temos:{a}_{\frac{n+1}{2}} = \sqrt[]{{a}_{1}.{a}_{n}}\rightarrow{a}_{1}.{a}_{n} = \left({\frac{n+1}{2}} \right)^{2}\rightarrow{a}_{1}.{a}_{n} = \left({2}^{5} \right)^{2}\rightarrow{a}_{1}.{a}_{n} = {2}^{10}
O produto dos n primeiros termos da P.G. ({a}_{1},{a}_{2},...,{a}_{\frac{n+1}{2}},...,{a}_{n}) , é dado por P_n = \sqrt[]({{a}_{1}.{a}_{n}})^{n}. .
Substituindo P_n por {2}^{25} e {a}_{1}.{a}_{n} por {2}^{10}, vem:
P_n = \sqrt[]({{a}_{1}.{a}_{n}})^{n} \rightarrow{2}^{25} = \sqrt[]{({2}^{10})^{n}}\rightarrow{2}^{25} = \sqrt[]{({2}^{n})^{10}}\rightarrow{2}^{25} = {2}^{5n}\rightarrow 5n = 25\rightarrow n = 5
A soma dos (n – 1) primeiros termos dessa P.G. é dada por 2 ? ( 1 + q ) ? (1 + q^2 )
Como n = 5, o termo do meio é o terceiro, isto é:
a_3 = a_1.{q}^{2}\rightarrow  a_1 = \frac{{a}_{3}}{{q}^{2}} \rightarrow{a}_{1} = \frac{32}{{q}^{2}}
Segue que:
{s}_{4} = \frac{{a}_{1\left({q}^{4}-1 \right)}}{\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left[\left({{q}^{2}} \right)^{2}-1 \right]}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}-1 \right).\left({q}^{2}-1 \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow{s}_{4} = \frac{32\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)}
Substituindo{s}_{4} por 2.\left(1+q \right).\left(1+{q}^{2} \right)vem:
2.\left(1+q \right).\left(1+{q}^{2} \right) = \frac{32.\left({q}^{2}+1).\left(q+1 \right).\left(q-1 \right) \right)}{{q}^{2}.\left(q-1 \right)}\rightarrow\frac{32}{{q}_{2}} = 2\rightarrow{q}^{2} = 16 ? q = 4 ou q = -4 ( não convém, pois devemos ter q > 0 )
O primeiro termo é dado por:{a}_{1} = \frac{32}{{q}^{2}}\rightarrow{a}_{1} = \frac{32}{{4}^{2}}\rightarrow{a}_{1} = 2
Como a_1 = 2, q = 4, n = 5, temos: a_1+ q +n=11
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D