• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressões

progressões

Mensagempor solon » Ter Jul 21, 2015 01:56

queria que me mostrassem como resolver o seguinte problema: Seja (b1, b2, b3) uma progressão geométrica de razão maior do que 1. Se b1+b2+b3=91 e (b1+25, b2+27, b3+1) é uma progressão aritmética, então b1 é igual a : A resposta correta é 7, mas como chegar a esse resultado ?
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor nakagumahissao » Ter Jul 21, 2015 11:04

Dados:

\left({b}_{1}, \,\, {b}_{2}, \,\, {b}_{3}  \right) \,\,\,\, PG \,\,\,\, [1]

\left({b}_{1} + 25, \,\, {b}_{2} + 27, \,\, {b}_{3} + 1 \right) \,\,\,\, PA \,\,\,\, [2]

{b}_{1} + {b}_{2} + {b}_{3} = 91  \,\,\,\, [3]

q > 1

A razão da PG em [1] será:

q = \frac{{b}_{2}}{{b}_{1}} = \frac{{b}_{3}}{{b}_{2}}

{{b}_{2}}^{2} = {b}_{1} {b}_{3}

{b}_{3} = \frac{{{b}_{2}}^{2}}{{b}_{1}} \,\,\,\,\, [4]

A razão na PA em [2] será:

r = {b}_{2} + 27 - ({b}_{1} + 25) = {b}_{3} + 1 - ({b}_{2} + 27)

r = {b}_{2} + 27 - {b}_{1} - 25 = {b}_{3} + 1 - {b}_{2} - 27

r = {b}_{2} - {b}_{1} + 2 = {b}_{3}- {b}_{2} - 26

{b}_{2} - {b}_{1} - {b}_{3} + {b}_{2} =  - 26 - 2

2{b}_{2} - {b}_{1} - {b}_{3} =  - 28   \,\,\,\, [5]

Usando [3] em [5], observamos que:

{b}_{1} + {b}_{2} + {b}_{3} = 91

2{b}_{2} - {b}_{1} - {b}_{3} =  - 28

eles formam um sistema de equações e que, se somarmos ambas as equações, poderemos encontrar um dos valores. Somemos então as duas equações:

3{b}_{2}  = 63

{b}_{2}  = \frac{63}{3}

{b}_{2}  = 21

Agora, vamos substituir este valor em [3], [4] e [5]:

{b}_{1} + {b}_{2} + {b}_{3} = 91 \Rightarrow {b}_{1} + 21 + {b}_{3} = 91 \Rightarrow

\Rightarrow {b}_{1} + {b}_{3} = 70  \,\,\,\, [6]


{b}_{3} = \frac{{{b}_{2}}^{2}}{{b}_{1}} \Rightarrow {b}_{3} = \frac{{21}^{2}}{{b}_{1}} \Rightarrow

\Rightarrow {b}_{3} = \frac{441}{{b}_{1}} \,\,\,\,\, [7]


2{b}_{2} - {b}_{1} - {b}_{3} =  - 28 \Rightarrow 2 \times 21 - {b}_{1} - {b}_{3} =  - 28 \Rightarrow 42 - {b}_{1} - {b}_{3} =  - 28 \Rightarrow

\Rightarrow - {b}_{1} - {b}_{3} =  - 70 \Rightarrow

\Rightarrow {b}_{1} + {b}_{3} = 70  \,\,\,\, [8]

Usando [7] em [6] ou [8], teremos:

{b}_{1} + {b}_{3} = 70 \Rightarrow {b}_{1} + \frac{441}{{b}_{1}} = 70 \Rightarrow

\Rightarrow {{b}_{1}}^{2} + 441 = 70{b}_{1} \Rightarrow {{b}_{1}}^{2} - 70{b}_{1} + 441 = 0

Desta última equação (quadrática) obtemos:

\Delta = b^2 - 4ac \Rightarrow \Delta = 4900 - 1764 \Rightarrow \Delta = 3136

\sqrt[]{\Delta} = 56

{b}_{1} = \frac{-b \pm \sqrt[]{\Delta}}{2a} \Rightarrow

\Rightarrow {b}_{1} = \frac{70 \pm 56}{2} = 35 \pm 28

\therefore {b}_{1} = 63 \,\,\,\,\, ou \,\,\,\,\,\, {b}_{1} = 7


Com estes dois resultados, vamos agora obter através de [6] ou [8] o valor do terceiro termo da PA e da PG:

Usando 63 para o primeiro termo:

{b}_{1} + {b}_{3} = 70 \Rightarrow 63 + {b}_{3} = 70  \Rightarrow {b}_{3} = 70 - 63 \Rightarrow {b}_{3} = 7

Usando 7 para o primeiro termo:

{b}_{1} + {b}_{3} = 70 \Rightarrow 7 + {b}_{3} = 70  \Rightarrow {b}_{3} = 70 - 7 \Rightarrow {b}_{3} = 63

Agora, ficamos com estas duas possibilidades para a PG e a PA:

RESPOSTA 1:

PG - (63, 21, 7) => Razão: 1/3
PA - (63 + 25, 21 + 27, 7 + 1) = (88, 48, 8) => razão = -40

e

RESPOSTA 2:

PG - (7, 21, 63) => Razão: 3
PA - (7 + 25, 21 + 27, 63 + 1) = (32, 48, 64) => razão = 16

No enunciado, foi dado que a razão (q) deve ser maior que 1 (q > 1). Portanto, a única resposta possível para esta questão deverá ser a RESPOSTA 2, ou seja, o primeiro termo vale 7.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: progressões

Mensagempor solon » Ter Jul 21, 2015 12:43

valeu! obrigado por mostrar-me os métodos de resolução sobre as dúvidas que tive, assim só engrandece cada vez mais a difusão do conhecimento.
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.