• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG

PG

Mensagempor zenildo » Seg Jul 20, 2015 14:13

O número de termos da sequência (1,2,2,4,4,4,4, ..., 64,..., 64)
é igual a
1) 255
2) 231
3) 173
4) 127
5) 115

Olha, tentei de várias maneiras. Usei a fórmula Sn= (a1(q^n-1))/(q-1) →Sn= (1(2^7-1))/(2-1) ∴ Sn=127, porém ainda a resposta não é essa. Na minha opinião ela está ali entre 1 e 3. Eu queria saber porque a fórmula não está dando certo?
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: PG

Mensagempor nakagumahissao » Seg Jul 20, 2015 20:06

Zenildo,


Utilizar a fórmula da soma diretamente com base na sequência dada não funcionárá porque a sequência dada não é uma PG "pura", apesar de que, por coincidência, sua resposta seja a correta. Exemplo de uma PG:

(3, 6, 12, 24,...) onde 6/3 = 2, 12/6=2, 24/12 = 2, ou seja, a razão sempre e dois. O primeiro termos vale 3, o segundo seria 2 x 3 = 6, o terceiro termo 2 x 6 = 12 e assim por diante. Sempre estamos multiplicando por 2 neste caso e por isso é uma PG pura.

No caso da sequência que forneceu, ela ainda não é uma PG "pura" pois as razões se alteram de um termo para outro. No entanto, se separarmos alguns membros, formando conjuntos diferentes podemos dizer que ela é uma PG, mas do jeito que foi dada, ainda não é uma PG e por isso, as fórmulas para PG ainda não se aplicam.

Sendo sua sequêcia: (1,2,2,4,4,4,4, ..., 64,..., 64)

podemos formar outras sequências com alguns membros tais como:

(1, 2, 4, 8, 16, 32, 64) = 7 termos
(2, 4, 8, 16, 32, 64) = 6 termos
(4, 8, 16, 32, 64) = 5 termos
(4, 8, 16, 32, 64) = 5 termos
(8, 16, 32, 64) = 4 termos
(8, 16, 32, 64) = 4 termos
(8, 16, 32, 64) = 4 termos
(8, 16, 32, 64) = 4 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(16, 32, 64) = 3 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
(32, 64) = 2 termos
e por fim temos 64 aparecendo 32 vezes acima e portanto, ainda faltam aparecer mais 32 vezes para termos 64 sequencias com o 64 nele. Assim estão faltando 32 sequencias de (64)

Somando-se a quantidade termos de cada uma destas sequencias, teremos: 95 + os últimos 32 = 127 termos no total.

Vamos agora calcular de outra forma:

O número 1 aparece apenas uma vez.
O número 2 aparece 2 vezes
O número 4 aparece 4 vezes
O número 8 aparece 8 vezes
e assim por diante até
O número 64 aparece 64 vezes.

Logo se formarmos uma nova sequencia, teremos: (1, 2, 4, 8, 16, 32, 64) que é uma PG de razão 2

O número de termos dessa PG é 7. Cada termo desta nova PG representa a quantidade de termos na PG original. Assim, bastará que somemos tudo ou, que utilizemos a fórmula da Soma da PG nesta nova PG para termos o total de termos da PG original, ou seja:

{s}_{n} = \frac{{a}_{1}\left({q}^{n} - 1 \right)}{q - 1}

{s}_{7} = \frac{1\left({2}^{7} - 1 \right)}{2 - 1}

{s}_{7} = \frac{1\left(128 - 1 \right)}{1}

{s}_{7} = 127

Portanto, o total de termos da sequencia original é 127. Como calculamos manualmente na primeira parte.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 380
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron