• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressões

progressões

Mensagempor solon » Ter Jul 14, 2015 02:58

olá, este é o meu primeiro contato com a equipe ajuda Matemática, queria desde já agradecer por esta oportunidade grandiosa de poder interagir com uma comunidade matemática, para que possa haver uma troca mútua de informações, que de certa forma estaremos contribuindo com a difusão do conhecimento. Tenho uma dúvida com relação a como encontrar a razão de uma progressão geométrica da seguinte forma: para 0<a<1, a soma algébrica a-a/2+a^2-a/2^2+a^3-a/2^3+...a^n-a/2^n+...vale:, a reposta correta é a seguinte: a^2/1-a . Já utilizei algumas das propriedades das progressões mas não consegui encontrar o resultado, acredito ter que primeiramente encontrar a razão. Preciso que me mostra um método de resolução para o tal enunciado. Agradeço pela compreensão.
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor nakagumahissao » Qua Jul 15, 2015 10:13

A solução deste mesmo problema foi deixada em outro post de mesmo enunciado. Por favor, ver o outro post.

viewtopic.php?f=110&t=17655
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}