• Anúncio Global
    Respostas
    Exibições
    Última mensagem

progressões

progressões

Mensagempor solon » Ter Jul 14, 2015 02:58

olá, este é o meu primeiro contato com a equipe ajuda Matemática, queria desde já agradecer por esta oportunidade grandiosa de poder interagir com uma comunidade matemática, para que possa haver uma troca mútua de informações, que de certa forma estaremos contribuindo com a difusão do conhecimento. Tenho uma dúvida com relação a como encontrar a razão de uma progressão geométrica da seguinte forma: para 0<a<1, a soma algébrica a-a/2+a^2-a/2^2+a^3-a/2^3+...a^n-a/2^n+...vale:, a reposta correta é a seguinte: a^2/1-a . Já utilizei algumas das propriedades das progressões mas não consegui encontrar o resultado, acredito ter que primeiramente encontrar a razão. Preciso que me mostra um método de resolução para o tal enunciado. Agradeço pela compreensão.
solon
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Jul 14, 2015 02:02
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: progressões

Mensagempor nakagumahissao » Qua Jul 15, 2015 10:13

A solução deste mesmo problema foi deixada em outro post de mesmo enunciado. Por favor, ver o outro post.

viewtopic.php?f=110&t=17655
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.