• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão aritmética e progressão geométrica

Progressão aritmética e progressão geométrica

Mensagempor Danilo Dias Vilela » Sex Mar 12, 2010 13:41

Gostaria que ajudassem a articular a seguinte questão para obter a resposta.

1) Sabendo que ({a}_{1};{a}_{2};{a}_{3};...) é uma P.A. de razão 3, ({b}_{1};{b}_{2};{b}_{3};...) é uma P.G. de razão 2, {a}_{1}={b}_{2} e {a}_{7}={b}_{4}, calcule o valor de {a}_{5}+{b}_{5}.

a) 36
b) 48
c) 56
d) 58
e) 66

GABARITO: letra e
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Progressão aritmética e progressão geométrica

Mensagempor thadeu » Sex Mar 12, 2010 17:36

a_5=a_1+4r, como a razão é r = 3, então, a_5=a_1+12

b_5=b_1.q^4, como a razão é q = 2, então, b_5=b_1.(2)^4\,\Rightarrow\,b_5=16b_1

Foram dados que:
A)\,\,\,a_1=b_2\,\Rightarrow\,a_1=b_1.q\,\Rightarrow\,a_1=2b_1
B)\,\,\,a_7=a_1+6r\,\Rightarrow\,a_7=a_1+6(3)\,\Rightarrow\,a_7=a_1+18
C)\,\,\,b_4=b_1.q^3\,\Rightarrow\,b_4=b_1(2)^3\,\Rightarrow\,b_4=8b_1

Como a_7=b_4\,\Rightarrow\,a_1+18=8b_1, substituindo o valor de a_1
2b_1+18=8b_1\,\Rightarrow\,6b_1=18\,\Rightarrow\,b_1=3

Com isso, temos que se a_1=2b_1\,\Rightarrow\,a_1=2(3)\,\Rightarrow\,a_1=6

Encontrando a_5\,\,\,e\,\,\,b_5
a_5=6+12\,\Rigtarrowa_5=18
b_5=16(3)\,\Rightarrow\,b_5=48

a_5+b+5=18+48=66
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.