por zenildo » Dom Jan 18, 2015 10:23
SEJAM a1= 1-i; an=r+si E an+1= (r-s)+(r+s)i (n>1)TERMOS DE UMA SEQUÊNCIA. DETERMINE, EM FUNÇÃO DE n, OS VALORES DE r E s QUE TORNAM ESTA SEQUÊNCIA UMA PROGRESSÃO ARITMÉTICA, SABENDO QUE r E s SÃO N° REAIS E i = ?(-1.)
COMO ESTA ESPÉCIE DE PROBLEMA DE NÚMERO COMPLEXO É UMA ANEXAÇÃO COM PROGRESSÃO ARITMÉTICA.PERCEBI, PORTANTO, QUE PODEMOS APLICAR A FÓRMULA DO TERMO GERAL DA PROGRESSÃO ARITMÉTICA. an=a1+(n-1).r. DEPOIS DE TER PERCEBIDO ISSO, A1, An E An+1, SÃO TERMOS DE UMA SEQUÊNCIA E QUE FOI DEDUZIDOS PARA SUBSTITUIR NA DITA FÓRMULA.
COMO ESTE PROBLEMA FOI RETIRADO DE UM LIVRO, ACHEI QUE A ADAPTAÇÃO DE UMA SEGUNDA FÓRMULA FICOU MAIS OU MENOS CONFUSA. EIS ABAIXO:
an+1=an + d, onde ´´d´´ representa a razão.
EU ENTENDI QUE ESSA SEGUNDA FÓRMULA SERIA UMA ADAPTAÇÃO DA INTERPRETAÇÃO DOS TERMOS SEQUENCIAIS DA PA: [a1,an,an+1].EM QUE, O TERMO DA ÚLTIMA SEQUÊNCIA SERIA IGUAL A SOMA DO PENÚLTIMO (an) COM A RAZÃO (d).JÁ QUE, A RAZÃO É UM PROCESSO INVERSO DA ADIÇÃO, OU SEJA, É UMA SUBTRAÇÃO DO SEGUNDO TERMO COM A DO PRIMEIRO ( r= an-a1).
EU QUERIA SABER ENTÃO SE ESTA FORMULA FAZ SENTIDO E QUE A INTERPRETAÇÃO ESTÁ CERTA?
an+1=an + d
Aí depois, fazemos algumas manipulações:
(r-s)+(r+s)i=r+si+d?(2r-r-s+s)=d?
-si+r=d ?(-s+r).i=d
O outro resultado dessa manipulação teria dado:
(r+si)=(1-i)+(n-1).d ?an=a1+(n-1).r
an+1=an+d ? (r-s)+(r+s)i=r+si+d
? (r-s)+(r+s)i=(r+s)i+d
portanto: r-s=d
que não batia com a resposta do livro, pois a resposta é: -s+ri=d.
OBRIGADO.
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UNIFOR) Progressão Aritmética e Progressão Harmônica
por andersontricordiano » Ter Mar 22, 2011 12:56
- 1 Respostas
- 6136 Exibições
- Última mensagem por LuizAquino

Ter Mar 22, 2011 13:52
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4727 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5630 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- Progressão Aritmética
por Rejane Sampaio » Qua Set 17, 2008 16:20
- 1 Respostas
- 4425 Exibições
- Última mensagem por juliomarcos

Qui Set 18, 2008 13:07
Álgebra Elementar
-
- Progressão Aritmética (PA)
por Cleyson007 » Ter Jan 27, 2009 21:40
- 2 Respostas
- 8401 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 12:31
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.