• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A. e não múltiplos

P.A. e não múltiplos

Mensagempor Cleyson007 » Qui Dez 24, 2009 11:45

Olá, bom dia!

---> Calcule o número de números inteiros, não múltiplos de 4, existentes entre 100 e 1000.

Penso que se encontrar todos os números (múltiplos e não múltiplos) e subtrair dos múltiplos de 4 encontrarei o valor. Porém, o que gostaria de saber é se existe um outro método menos trabalhoso.

Agradeço sua ajuda.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: P.A. e não múltiplos

Mensagempor Lucio Carvalho » Qui Dez 24, 2009 13:02

Olá Cleyson,
Do meu ponto de vista, a maneira que apresentas é a menos trabalhosa.

Fazendo 1000 - 99 = 901 (ficamos a saber que existem 901 números inteiros entre 100 e 1000, incluindo estes)

Em seguida, consideramos a sequência dos múltiplos de 4 maior ou igual a 100: 100, 104, 108, ...
Criamos o termo geral da P. A., sabendo que a1 = 100 e r = 4:

an = 100+(n-1).4
an = 4n+96
Calculamos a ordem do termo 1000:
1000 = 4n+96
n = 226
Logo, existem 226 múltiplos de 4 entre 100 e 1000, incluindo estes.

Finalmente, 901 - 226 = 675

Resposta: Existem 675 números inteiros, não múltiplos de 4, entre 100 e 1000.

Adeus e espero os comentários dos outros participantes!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: P.A. e não múltiplos

Mensagempor Cleyson007 » Qui Dez 24, 2009 16:36

Boa tarde Lúcio!

Lucio, olhando bem, a resolução não é tão trabalhosa assim, não é verdade?

Não entendi a seguinte parte:

"Fazendo 1000 - 99 = 901 (ficamos a saber que existem 901 números inteiros entre 100 e 1000, incluindo estes)"

Por que faz-se 1000 - 99?

Agradeço sua ajuda!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}