• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A. e não múltiplos

P.A. e não múltiplos

Mensagempor Cleyson007 » Qui Dez 24, 2009 11:45

Olá, bom dia!

---> Calcule o número de números inteiros, não múltiplos de 4, existentes entre 100 e 1000.

Penso que se encontrar todos os números (múltiplos e não múltiplos) e subtrair dos múltiplos de 4 encontrarei o valor. Porém, o que gostaria de saber é se existe um outro método menos trabalhoso.

Agradeço sua ajuda.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1215
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: P.A. e não múltiplos

Mensagempor Lucio Carvalho » Qui Dez 24, 2009 13:02

Olá Cleyson,
Do meu ponto de vista, a maneira que apresentas é a menos trabalhosa.

Fazendo 1000 - 99 = 901 (ficamos a saber que existem 901 números inteiros entre 100 e 1000, incluindo estes)

Em seguida, consideramos a sequência dos múltiplos de 4 maior ou igual a 100: 100, 104, 108, ...
Criamos o termo geral da P. A., sabendo que a1 = 100 e r = 4:

an = 100+(n-1).4
an = 4n+96
Calculamos a ordem do termo 1000:
1000 = 4n+96
n = 226
Logo, existem 226 múltiplos de 4 entre 100 e 1000, incluindo estes.

Finalmente, 901 - 226 = 675

Resposta: Existem 675 números inteiros, não múltiplos de 4, entre 100 e 1000.

Adeus e espero os comentários dos outros participantes!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: P.A. e não múltiplos

Mensagempor Cleyson007 » Qui Dez 24, 2009 16:36

Boa tarde Lúcio!

Lucio, olhando bem, a resolução não é tão trabalhosa assim, não é verdade?

Não entendi a seguinte parte:

"Fazendo 1000 - 99 = 901 (ficamos a saber que existem 901 números inteiros entre 100 e 1000, incluindo estes)"

Por que faz-se 1000 - 99?

Agradeço sua ajuda!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1215
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: