• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão geométrica (Soma da PG infinita)

Progressão geométrica (Soma da PG infinita)

Mensagempor kellykcl » Qui Fev 27, 2014 23:20

Boa noite amigos do fórum!

Preciso de ajuda para entender (como se resolve) a seguinte questão de PG!

(U.F.PE) Seja {Q}_{1} um quadrado de lado medindo {l}_{1} unidades de comprimento. Unindo-se os pontos médios dos lados de {Q}_{1}, formamos um novo quadrado {Q}_{2} de lado medindo {l}_{2} unidades de comprimento. Assim procedendo indefinidamente, obtemos a sequência de quadrados {Q}_{1},{Q}_{2},...,{Q}_{n},... , onde {S}_{1},{S}_{2},...,{S}_{n},... são, respectivamente, as medidas das áreas destes quadrados. Assinale a alternativa que corresponde à soma


S=\sum_{i=1}^{\infty}Si

a) 2\, \l_{1}^{2} unidades de comprimento

b) \l_{1}^{2} unidades de comprimento

c) \l_{1/2}^{2} unidades de comprimento

d) (\l_{1/2})² unidades de comprimento

e) \l_{1}^{3} unidades de comprimento

***Gabarito: a

Obrigada a todos!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado

Re: Progressão geométrica (Soma da PG infinita)

Mensagempor Russman » Sex Fev 28, 2014 15:09

Perceba, primeiramente, que a medida do lado do quadrado obtido posteriormente a união do pontos médios deverá ser metade da medida do lado do quadrado original. Assim, adotando a variável n \in \mathbb{N} para contar os sucessivos quadrados obtidos sendo n=1 o primeiro, temos a seguinte relação de recorrência:
l_{n+1} = \frac{l_n}{2}

Essa equação tem como solução l_n = l_1 \left ( \frac{1}{2} \right )^{n-1}.

Agora, a área S_n do n-ésimo quadrado é dada pelo quadrado da medida de seu lado.
Portanto,

S_n = (l_n)^2 = l_1^2 \left ( \frac{1}{4} \right )^{n-1}

ou, ainda, S_n = (l_n)^2 =4 l_1^2 \left ( \frac{1}{4} \right )^{n}.

A soma de todas as áreas será

S=\sum_{n=1}^{\infty }S_n = \sum_{n=1}^{\infty }4 l_1^2 \left ( \frac{1}{4} \right )^{n} = 4l_1^2 \sum_{n=1}^{\infty }\left ( \frac{1}{4} \right )^{n}

O último somatório obtido é a soma de uma P.G. de razão e primeiro termo \frac{1}{4}. É conhecido que

\sum_{n=1}^{\infty }\left ( \frac{1}{a} \right )^{n} = \frac{1}{a-1} se a>1.

Tomando a=4, então \sum_{n=1}^{\infty }\left ( \frac{1}{4} \right )^{n} =  \frac{1}{4-1} =  \frac{1}{3}. Daí,

S= 4 l_1^2 \frac{1}{3} = \frac{4}{3} l_1^2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão geométrica (Soma da PG infinita)

Mensagempor alexandre_de_melo » Sex Fev 28, 2014 17:07

Usando pitágoras, você descobrirá que o lados dos quadrados são dados por l_n = l_1 * ({ \frac { \sqrt 2}{ 2 }})^{n-1}.
l_2 =l_1{ \frac { \sqrt 2 }{2 }
l_3 =l_1({ \frac { \sqrt 2 }{2}})^2
l_4 =l_1({ \frac { \sqrt 2 }{2}})^3

Como cada quadrado tem área S_n = (l_n)^2, temos que cada quadrado terá área S_n=(l_1)^2*( { \frac {1}{2} })^{n-1}, logo,
\sum_{n=1}^\infty S_n =\sum_{n=1}^\infty (l_1)^2*({\frac{1}{2}})^{n-1}

=(l_1)^2*\sum_{n=1}^\infty ({\frac{1}{2}})^{n-1}, observe que temos ao lado a soma de uma p.g. de termo inicial 1 e razão 1/2 .

(l_1)^2*{\frac{1}{1-(\frac{1}{2})}}

(l_1)^2*2

Desculpem qq erro! Esse Látex me mata!!!!kkkkk
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D