• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Progressão Geométrica] Questão interessante.

[Progressão Geométrica] Questão interessante.

Mensagempor Russman » Qui Jan 17, 2013 19:19

Achei a questão abaixo interessante principalmente pelo dever de interpretar bem o enunciado e pensei em compartilhar com vocês.

PG.gif
PG.gif (25.21 KiB) Exibido 1795 vezes
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Progressão Geométrica] Questão interessante.

Mensagempor ant_dii » Sex Jan 18, 2013 03:03

Bom,
a função que governa este crescimento é dada fazendo o seguinte: t=tempo em horas e f(t)=numero de bactérias no tempo t
para t temos f(t)
0          \rightarrow                 10
12         \rightarrow                 20
24         \rightarrow                 40

e assim por diante. Toda função exponencial é dada por f(x)=a \cdot b^x.

Fazendo então
f(0)=a \cdot b^0=10 \Rightarrow a=10

f(12)=a \cdot b^{12} = 20 \Rightarrow 10b^{12}=20 \Rightarrow b^{12}=2 \Rightarrow b=2^{\frac{1}{12}}

temos f(t)=10 \cdot 2^{\frac{1}{12}t}

Como se quer saber em 7 dias e dobra a população a cada doze horas, teremos 24*7=168. Então t=168, logo

f(168)=10 \cdot 2^{\frac{1}{12}168}=10 \cdot 2^{14}...

Colocando

10 \cdot 2^{14}=x
teremos

\log{(10 \cdot 2^{14})}= \log{x} \Rightarrow \log{10}+\log{2^{14}} = \log{x} \Rightarrow 1+14\cdot \log{2}=\log{x}

utilizando a aproximação dada teremos

1+14 \cdot 0,3 =\log{x} \Rightarrow 5,2=\log{x} \Rightarrow 10^{5,2}=x

O que indica que o número de bactérias, decorrida uma semana exata e desconsiderando qualquer outro fator, estará entre 10^{5} e
10^{5,5}.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: [Progressão Geométrica] Questão interessante.

Mensagempor Russman » Sex Jan 18, 2013 20:05

Isso mesmo, amigo. :y:
Boa resolução.

Eu comentei sobre o enunciado pois muita gente errou essa questão por fazer confusão na contagem do tempo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}