• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão sobre PA e PG

Questão sobre PA e PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 17:35

Seja (x; y; z; w) uma progressão aritmética crescente cuja soma é 10 e (a; b; c; d) uma progressão geométrica com a + b = 1 e c + d = 9. Se ambas as sequências têm a mesma razão, então o produto y. w é.. ?

gabarito: 7
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão sobre PA e PG

Mensagempor karla_paula » Qua Jun 16, 2010 19:17

a+b=1

c+d=9

{a}_{1}+{a}_{1}.q=1
{a}_{1}{q}^{2}+{a}_{1}.{q}^{3}=9
\frac{{a}_{1}.(1+q)=1}{{a}_{1}.{q}^{2}.(1+q)=9}
q=\frac{1}{3}
x+y+z+w=10==>x+x+\frac{1}{3}+x+\frac{2}{3}+x+1=10 => x=2
{a}_{1}=x
{a}_{2}=x+r =x+\frac{1}{3}=\frac{7}{3}

{a}_{3}=x+2r=x+\frac{2}{3}

{a}_{4}=x+3r=x+1=3

entao :y.w= \frac{7}{3}.3=7
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Questão sobre PA e PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 20:50

Só não entendi uma coisa, Karla.. Para achar a razão da PG, não teríamos que dividir os termos posteriores pelos anteriores? ou seja, o (c + d) por (a + b) ao invés do contrário? =/ pois para achar a razão da PG entre 2 termos pelo menos é assim, certo? b/a = q; c/b = q... só não entendi isso mesmo =/
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Questão sobre PA e PG

Mensagempor karla_paula » Qui Jun 17, 2010 11:28

realmente vç esta correta e por acaso o que eu fiz deu certo , mas a resposta correta esta abaixo

a+b =1 e c+d =9
\frac{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=9}{{a}_{1}+{a}_{1}q=1}

{q}^{2}=9=+- 3
x+y+z+w=10
x+x+r+x+2r+x+3r=10  =>4x+6.3=10 =>x=-2
y=x+r=-2+3=1
w=x+3r=-2+3.3=7
y.w=1.7=7
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Questão sobre PA e PG

Mensagempor karla_paula » Qui Jun 17, 2010 11:33

nao usamos o -3 por que é uma PA crescente
karla_paula
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Jun 12, 2010 08:09
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Questão sobre PA e PG

Mensagempor Carolziiinhaaah » Qui Jun 17, 2010 13:31

OK! Muito obrigada pela resolução e por esclarecer essa minha dúvida, Karla :-D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.