• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quantidade de números de linhas

Quantidade de números de linhas

Mensagempor leticiapires52 » Qui Mai 29, 2014 12:41

Para o desfile da abertura dos Jogos Internos do colégio UNIBI , um professor de Educação física organizou seus 210 alunos para formar um triângulo . Colocou um aluno na primeira linha , dois na segunda , três na terceira e assim por diante. Determine a quantidade de número de linhas feitas:
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Quantidade de números de linhas

Mensagempor Russman » Sex Mai 30, 2014 00:17

Pense que a n-ésima linha será formada por a(n) alunos. É fácil de perceber que a quantidade de alunos da p´roxima linha, isto é, da linha de número n+1 será tal que
a(n+1) = a(n) + 1

Ou seja, a quantidade de alunos da próxima linha será Sempre a quantidade de alunos da linha anterior mais um aluno.

Reconhece esse comportamento? É uma P.A.! Já que a razão é 1 e a quantidade de alunos na primeira fila é 1, então o termo geral será

a(n) = 1 + n-1 = n

Agora, aplique a fórmula de soma de uma P.A. e calcule para qual n que a mesma vale 210.

Tão simples quanto isso.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Quantidade de números de linhas

Mensagempor leticiapires52 » Sex Mai 30, 2014 10:46

deu 20
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.