• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor zenildo » Qui Ago 22, 2013 15:30

O 5° termo é 7 e sua razão é 2, qual é o 1° termo?
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Renato_RJ » Qui Ago 22, 2013 15:45

Boa tarde !!

Use a relação a_n = a_1 + (n - 1)\cdot r, você sabe o valor do 5º termo e a razão.

Qualquer coisa, posta aí...

Abraços...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Luis Gustavo » Qui Ago 22, 2013 17:15

Pra resolver é a mesma coisa que eu disse no outro tópico seu sobre P.A., a diferença é que aqui você quer achar o primeiro termo. A fórmula usada é a mesma, o termo geral da P.A.

a_n=a_1+(n-1)\cdot r

Mais uma vez, vou te dar um exemplo pra te ajudar a fazer, e não dar a resposta pronta.



r=4

a_6=22

n=6

a_n=a_1+(n-1)\cdot r
22=a_1+(6-1)\cdot4
22=a_1+5\cdot4
22=a_1+20
a_1+20=22
a_1=22=20
a_1=2


Fácil, não?
Espero ter ajudado.
Luis Gustavo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Mai 06, 2013 15:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor zenildo » Qui Ago 22, 2013 17:39

obrigado, jesus te abençoe.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}