• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A.

P.A.

Mensagempor jolie » Qui Out 29, 2009 10:31

Não estou enviando tentativas pois não tenho a minima idéia de como resolver.

As raízes da equação x³+9kx²+nx+m=0 formam uma P.A. de razão 3. qual é o valor de m e n?
jolie
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 29, 2009 10:04
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: P.A.

Mensagempor Elcioschin » Sáb Out 31, 2009 10:11

Raízes ---> a, a + 3, a + 6

Pelas Relações de Girard:

a + (a + 3) + (a + 6) = - 9k/1 -----> 3a + 9 = - 9k ----> a + 3 = - 3k ----> a = - 3(k + 1) -----> Equação I

a*(a + 3) + a*(a + 6) + (a + 3)*(a + 6) = n/1 ----->n = 3a² + 18a + 18 -----> Equação II

a*(a + 3)*(a + 6) = - m/1 -----> a³ + 9a² + 18a = - m ----> m = a³ + 9a² + 18a ----> Equação III

Basta agora subsituir a da equação I nas equações II e III e se obtém m, n em função de k
Editado pela última vez por Elcioschin em Sáb Out 31, 2009 12:54, em um total de 1 vez.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: P.A.

Mensagempor Cleyson007 » Sáb Out 31, 2009 12:00

Bom dia Jolie e Elcioschin!

A dica do Elcio foi ótima.. pelas Relações de Girard, os valores de m e n podem ser encontrados.

Não sei se você conhece as Relações de Girard (basta trabalhar com as raízes da equação), veja só:

Lembrando que as raízes da equação são: (a; a+3; a+6) --> O enunciado diz que elas formam um P.A. de razão 3.

{x}_{1}+{x}_{2}+{x}_{3}=\frac{-b}{a}

{x}_{1}{x}_{2}+{x}_{1}{x}_{3}+{x}_{2}{x}_{3}=\frac{c}{a}

{x}_{1}{x}_{2}{x}_{3}=\frac{-d}{a}

Substituindo a na 1ª equação, encontra-se:

Para n --> n=3{k}^{2}-1

Quanto ao valor de m --> {-k}^{3}+k=m

Comente qualquer dúvida :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: