• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Trigonométrica

Função Trigonométrica

Mensagempor Arkanus Darondra » Qui Jan 12, 2012 18:39

Como proceder para esboçar o gráfico da função f(x) = 3 + 3cos(3x +3)?

Agradeço a quem ajudar.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Trigonométrica

Mensagempor joaofonseca » Qui Jan 12, 2012 20:40

Numa função trigonométrica, podemos desde logo identificar: amplitude, periodo e deslocamentos horizontal e vertical.

Amplitude: 3

Periodo: \frac{2 \pi}{3}

Deslocamento horizontal: -1 (para a esquerda)

Deslocamento vertical: 3 (para cima)

Agora divide o periodo em 4 partes: \frac{ \pi}{6}
Agora ao ponto -1 soma 4 vezes o resultado anterior.De cada vez que somares anota o resultado.Será útil colocares tudo com o mesmo denominador.
Por fim substitui x na função pelos valores obtidos.Se tudo correu bem, vai obter 1, 0 ,-1,0 e 1.Marca as coordenadas, acabaste de esboçar um periodo da função.

Esta questão esta relacionada com as transformações de funções trigonometricas.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Trigonométrica

Mensagempor Arkanus Darondra » Qui Jan 12, 2012 21:30

Olá joaofonseca,

Obrigado pela explicação.
Pesquisei sobre o assunto e encontrei que para uma função cosseno f(x) = a + b.cos (mx + n) temos que:
período = \frac{2{\pi}}{|m|}
a = deslocamento vertical
b = amplitude
m = altera o período
n = deslocamento horizontal

Como temos, nesse caso, f(x) = 3 + 3cos(3x +3),
isso explica o fato de a amplitude ser 3, o período ser \frac{2{\pi}}{3} e o deslocamento vertical ser ser 3.
Porém, ainda não consegui entender porque o deslocamento horizontal é -1 e o que você disse após a divisão do período em 4 partes.

Poderia me explicar novamente?
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Trigonométrica

Mensagempor joaofonseca » Qui Jan 12, 2012 21:48

Deixo aqui um video do Youtube.Em inglês

joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Trigonométrica

Mensagempor Arkanus Darondra » Sex Jan 13, 2012 12:46

Finalmente consegui esboçar o gráfico desta função.
O grande problema que encontrei foi o fato de o período estar em radianos e o deslocamento horizontal não.
A solução que encontrei foi aproximar o período \frac{2{\pi}}{3} para 2,08
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.