• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] Expressão geral

[Trigonometria] Expressão geral

Mensagempor leoslae » Sex Nov 25, 2011 10:49

Um dos vértices, de um decágono regular inscrito em um círculo trigonométrico, coincide com o arco trigonométrico pi/4. Determine uma expressão geral para todos os dez vértices do decágono.


a) 4pi + 5k pi/20 b) 5 pi + 4kpi/20 c) 4 pi + 5 kpi/10 d) 5pi + 4kpi/10


Obs: Preciso dessa questão até as 2 e 40 de hoje. Me ajudem por favor.
leoslae
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 25, 2011 10:46
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso tecnico em Telecomunicações
Andamento: cursando

Re: [Trigonometria] Expressão geral

Mensagempor TheoFerraz » Sex Nov 25, 2011 13:11

bom... decágono inscrito no circulo trigonométrico, tal que um vertice corresponde a pi/4

seguinte, voce pode determinar uma equação geral, é simples.

Imagine o decágono inscrito no circulo trigonométrico e o angulo focado em \theta =  \frac{ \pi}{4} aonde se situa uma das arestras...

Voce concorda que se eu somar \phi, para algum \phi especifico, eu consigo chegar no proximo vértice?

ou seja, se {\theta}_{0} = \frac{\pi}{4}

entao {\theta}_{1} = {\theta}_{0} + \phi =  \frac{\pi}{4} + \phi

e obviamente {\theta}_{2} = {\theta}_{1} + \phi =  \frac{\pi}{4} + \phi \times 2

em fim... {\theta}_{n} =\frac{\pi}{4} + \phi \times (n)

só nos resta saber quem é \phi

o que sabemos com toda certeza sobre o decágono?

sabemos que {\theta}_{0} = \frac{\pi}{4}

e que {\theta}_{10} = {\theta}_{0} + 2 \pi

pela formula {\theta}_{10} = \frac{\pi}{4} + 10 \times \phi

e ao mesmo tempo, {\theta}_{10} = \frac{\pi}{4} + 2 \pi

entende aonde quero chegar ?

com isso, conseguimos uma formula explícita para qualquer angulo relacionado a qualquer vetice no seu decágono...

\frac{\pi}{4} + 10 \times \phi = \frac{\pi}{4} + 2 \pi

10 \times \phi = 2 \pi

\phi = \frac{\pi}{5}

portanto a formula geral é:

{\theta}_{n} = \frac{\pi}{4} + n \times \frac{\pi}{5}

que vai corresponder a letra b) caso voce queira dizer com:
5pi + 4kpi/20


na verdade

\frac{5 \pi + 4 k \pi}{20}
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.