por admin » Seg Jul 30, 2007 20:39
Encaminho aqui uma questão recebida de Juliana, para em seguida anexar uma resolução:
"
Por favor me ajudem a resolver essa questão!
(UECE)Se P=Sen40°/Sen20° - Cos40°/Cos20° ,então P² - 1 é igual a:
a)Sen²20°
b)Cos²20°
c)tg²20°
d)cotg²20°
A resposta correta é: O item "C"(tg²20°),mas ñ estou conseguindo responder,se alguem souber por favor me diga!
pelo orkut ou sei lá pod ser pelo o msn tbm
"
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por admin » Seg Jul 30, 2007 20:43
Olá Juliana.
Segue a resolução em anexo, antes um comentário:
Uma dica é iniciar simplificando P.
Você encontrará que

.
Para isso, primeiramente, você deverá considerar a soma de arcos.
Neste caso:


Depois, após o MMC, utilize o Teorema Fundamental da Trigonometria:

Em seguida, da seguinte relação,

Você obtém que

.
É claro que mesmo com o problema resolvido, podemos extrair outros questionamentos, como os porquês das fórmulas etc. Mas então, teremos outros problemas!
De qualquer forma, fiz uma resolução completa com estes passos em uma folha e digitalizei em PDF.
O arquivo está disponível aqui, caso precise:
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
Espero ter ajudado!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Trigonometria] Dúvida... questão sobre triangulo retangulo
por rochadapesada » Qua Abr 24, 2013 17:57
- 5 Respostas
- 3237 Exibições
- Última mensagem por young_jedi

Qui Abr 25, 2013 23:26
Trigonometria
-
- [Trigonometria] Exercício sobre um cone
por fff » Dom Abr 20, 2014 11:20
- 2 Respostas
- 3083 Exibições
- Última mensagem por fff

Ter Abr 22, 2014 15:25
Trigonometria
-
- Questão sobre PA e PG
por Carolziiinhaaah » Qua Jun 16, 2010 17:35
- 5 Respostas
- 5104 Exibições
- Última mensagem por Carolziiinhaaah

Qui Jun 17, 2010 13:31
Progressões
-
- Questao. trigonometria.
por enraikou » Sex Fev 04, 2011 19:49
- 1 Respostas
- 1701 Exibições
- Última mensagem por enraikou

Sex Fev 04, 2011 21:09
Trigonometria
-
- Questão de Trigonometria
por joaoxky » Sex Nov 18, 2011 00:01
- 2 Respostas
- 2245 Exibições
- Última mensagem por joaoxky

Sex Nov 18, 2011 12:07
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.