• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguém pode me ajudar?

Alguém pode me ajudar?

Mensagempor Andromeda » Seg Set 19, 2011 20:19

FAAP

Resolver a equação tgx - 2senx = 0 para 0\leq x\leq\Pi/2

Eu comecei com:

tgx = 2senx (/senx)

1/cosx = 2

cos x = 1/2

Resposta: V{ Pi/3}

Mas o livro dá como resposta
V{0; Pi/3}

E agora? O que fiz de errado ou não visualizei?
Andromeda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 27, 2011 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando

Re: Alguém pode me ajudar?

Mensagempor gvm » Seg Set 19, 2011 21:07

Bom, não sei exatamente o que tem de errado na sua resolução. Mas nas equações trigonométricas em geral você tem que tomar muito cuidado quando for dividir, pois seno, cosseno e tangente podem ser iguais a zero aí dá problema no resultado. Deve ter dado algum problema na hora em que você dividiu tudo por sen x ali, é a única explicação que eu posso imaginar.
Eu resolvi da seguinte maneira e cheguei a uma resposta igual à do gabarito.

tg x - 2 . cos x = 0
(sen x / cos x) - 2 . sen x = 0

Colocando sen x em evidência:

sen x [(1/cos x) - 2] = 0

Para o resultado de uma multiplicação ser zero, um dos fatores obrigatoriamente é igual a 0, então:
sen x = 0
x = 0

ou

(1/cos x) - 2 = 0
cos x = (1/2)
x = \Pi/3

S = {0 ; pi/3}
gvm
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Ago 25, 2011 00:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando Engenharia
Andamento: cursando

Re: Alguém pode me ajudar?

Mensagempor Andromeda » Seg Set 19, 2011 21:13

Putz! Tem razão...eu nem tinha me tocado de que senx, cosx e tgx pode dar zero...Acho que por isso estou errando uma 'porrada' de exercícios...Tenso viu?

Brigada, viu?
Andromeda
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jul 27, 2011 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Biomedicina
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.