• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Coordenadas de 8 pontos numa circunferencia

Coordenadas de 8 pontos numa circunferencia

Mensagempor cristfc » Qua Nov 05, 2008 15:43

minha pergunta é simples, na verdade não é pra nenhum curso nem nada, é pra um projeto pessoal mesmo..

eu tenho esse grafico abaixo:

Imagem

os pontos azuis são (20,0) o da direita e (0,20) o de baixo (o programa que vou usar interpreta como negativo acima do grafico e positivo pra baixo). O que eu preciso é descobrir as coordenadas no grafico dos pontos vermelhos, sendo que eles tem a mesma distancia entre eles e são 6 pontos

a variacao de inclinacao do angulo de um pra outro é 12.85714 eu apenas dividí 90/7, creio que isso seja muito facil mas nao sei a formula que uso pra resolver, eu gostaria de saber a formula pra resolver esse probleminha e descobrir essas coordenadas :)
abraços
cristfc
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 04, 2008 15:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Coordenadas de 8 pontos numa circunferencia

Mensagempor admin » Qua Nov 05, 2008 19:18

Olá cristfc, boas-vindas!

Sobre o programa interpretando o eixo y invertido, não se preocupe para o cálculo. Após obter as coordenadas procuradas, multiplique a ordenada y por -1 para refletir o ponto com relação ao eixo x.

Veja se esta figura ajuda:
circunferencia4.jpg


Como você pode ver, podemos utilizar as funções seno e cosseno, já que os ângulos a são conhecidos e há triângulos retângulos com as projeções:
a = k \cdot \frac{\frac{\pi}{2}}{7} = k \cdot \frac{\pi}{14}

Faça k variar em seu projeto, com k \in \left\{1, 2, 3, 4, 5, 6\right\}.
Note que representei o ângulo em radianos.
Cuidado ao utilizar as funções seno e cosseno em seu projeto pois normalmente os argumentos são esperados em radianos, não em graus.

Em resumo, dado um ponto P da circunferência de raio r e centro O, tal que P = (X_p, Y_p), então temos:

X_p = r \cdot cos\alpha
Y_p = r \cdot sen\alpha
Sendo \alpha o ângulo formado por OP e o eixo x.

Variando o ângulo, as coordenadas serão:
P = (r \cdot cos\alpha, r \cdot sen\alpha)

Para o caso particular:
P = \left(20 \cdot cos\left(\frac{k \pi}{14}\right), 20 \cdot sen\left(\frac{k \pi}{14}\right) \right)

k \in \left\{1, 2, 3, 4, 5, 6\right\}


Antes de utilizar, você precisa considerar a reflexão do ponto:
P' = \left(20 \cdot cos\left(\frac{k \pi}{14}\right), -20 \cdot sen\left(\frac{k \pi}{14}\right) \right)



Espero ter ajudado!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Coordenadas de 8 pontos numa circunferencia

Mensagempor cristfc » Seg Nov 10, 2008 22:04

obrigado, ajudou sim, e muito, finalmente conseguiu resolver isso.. estava quebrando a cabeça. vou por seu nome dos creditos hehehe :P


um abraço
cristfc
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 04, 2008 15:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Coordenadas de 8 pontos numa circunferencia

Mensagempor edwinaclima » Sáb Jul 10, 2010 11:44

Bom dia!

Preciso calcular o raio a partir de 3 coordenadas cartesianas. Como faço?

x y
8,59,-15,85
-3,87,-9,58
-12,35,-15,21

Dese já agradeço a ajuda
Edwin
edwinaclima
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 10, 2010 11:35
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.