• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular tangente a menos 1

Como calcular tangente a menos 1

Mensagempor macburn » Seg Abr 11, 2011 22:07

Olá pessoal,

Boa noite a todos. Bom, sempre me deparo com questões do tipo:
tg{}^{-1}\frac{80}{60}=53,13 (esse valor é dado em graus)

A dúvida é: "Como resolver isso?"

Abraços pessoal
macburn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Nov 02, 2010 14:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor FilipeCaceres » Seg Abr 11, 2011 22:51

tan^{-1} quer dizer arctan

Ou seja,
tan^{-1}\frac{8}{6}=arctan\frac{8}{6}

Vamos chamar de x o valor que queremos encontrar, assim temos
arctan\frac{8}{6}=x

tan x=\frac{8}{6}

Deste forma devemos encontrar qual é o ângulo cuja tangente é igual a \frac{8}{6}=1,\bar{3}

O mais fácil é ir para calculadora e colocar \frac{8}{6} + tecla tan^{-1}. :-D

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor macburn » Seg Abr 11, 2011 22:56

Olá pessoal,

Como vai? Obrigado pela ajuda, mas não resolveu minha questão que é saber como calcular esse valor sem o
uso da calculadora. Quem puder dar uma força,

Abraços a todos...
macburn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Nov 02, 2010 14:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor MarceloFantini » Ter Abr 12, 2011 03:57

Encontrar esse valor sem a calculadora eu imagino que seja muito, muito complicado, e diria até desnecessário.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor macburn » Ter Abr 12, 2011 09:02

Bom dia pessoal,

Bom, é o seguinte, estou a procura de como resolve isso pois, em provas de concurso acontece demais aparecer cálculos dessa natureza.
Se alguém tiver alguma sugestão!!

Abraços pessoal
macburn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Nov 02, 2010 14:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor LuizAquino » Ter Abr 12, 2011 09:44

Em provas de concurso, provavelmente se uma questão dessa aparecer então o cálculo para o arco-tangente será correspondente a "ângulos notáveis", tais como 30°, 45°, 60° ou combinações destes. Por exemplo, pode aparecer algo como \textrm{tg}\,^{-1} \sqrt{3}, que sabemos ser igual a 60°.

Outra possibilidade é que o exercício informe algum outro dado que ajude na resolução.

Fora do contexto de concursos, para determinar o arco-tangente de ângulos gerais é necessário usar alguma estratégia numérica para a aproximação. Eu imagino que você deve ter feito a disciplina de Métodos Numéricos em sua graduação (já que você fez Engenharia Elétrica). Eu recomendo que revise essa disciplina.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor macburn » Ter Abr 12, 2011 09:59

Grande Luiz,

Como vai meu nobre? Bom, me formei a 4 anos. Caso possa exemplificar através do exercício citado acima,
ficarei eternamente grato.

Abraços pessoal
macburn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Nov 02, 2010 14:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor LuizAquino » Ter Abr 12, 2011 10:20

Bem, dado um valor a você deve determinar x tal que \textrm{tg}^{-1}\, a = x, ou ainda, \textrm{tg}\, x = a.

Note que determinar o valor de x nesse caso é o mesmo que determinar a raiz da função f(x) = \textrm{tg}\,x - a.

Existem várias técnicas numéricas para determinar raízes de função. Por exemplo, uma delas é o Método de Newton.

Agora, cabe a você revisar o conteúdo! ;)
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Como calcular tangente a menos 1

Mensagempor Marcio Barbosa » Seg Jul 31, 2017 22:05

Amigos.

Por acaso, esses dias, eu estive pensando no mesmo problema, como calcular o arco de uma função trigonométrica sem calculadora. Depois de muito pesquisar pelo google e não achar nada, me lembrei das tábuas de mantissas de logaritmos. E voià-la! Encontrei o resultado muito facilmente, e com uma precisão de graus, minutos e segundos!

Antes das calculadoras científicas existirem, e depois disso, ficarem baratas o suficiente para que todo mundo possa comprá-las. O cálculos não triviais, eram feitos através das tábuas de logaritmos. Para o exemplo da pergunta inicial do tópico, existe uma tábua de logaritmos de senos, cossenos, tangentes e cotangentes de 1º a 90º de minuto a minuto.

No caso do problema do tópico, ficaria assim:

1º passo:
Encontrar o log (4/3) = 0,12494

2ºpasso:
Procurar a mantissa encontrada no passo anterior na tábua de logaritmos das tangentes e se não bater exatamente, fazer interpolação entre os dois valores mais próximos.
No exemplo:
53º 08' 00" = 0,12499
53º 07' (x)" = 0,12494
53º 07' 00" = 0,12473

Feita a interpolação você descobre que x=48 segundos.

Resultado final: Arco tangente de 4/3 = 53º 07' 48" ou 53,13º


Espero ter ajudado de alguma forma.

Abraço a todos. :y:
Marcio Barbosa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jul 31, 2017 21:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Músico
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D