• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria ( Funções )

Trigonometria ( Funções )

Mensagempor gtrbarata » Ter Jul 06, 2010 20:04

Olá, meu professor deixou um exercicio para a sala tentar resolver, mais estamos com dificuldades, gostaria de uma explicação.

o enunciado é o seguinte :

Dado sec x = 9/4, sendo x<= 3pi/2 <= 2pi, determine as demais funções.
( dado secante x 9 sobre 4 x menor ou igual a 3pi sobre 2 que é menor ou igual a 2pi, determine as demais funcoes.)
gtrbarata
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jul 06, 2010 19:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: matematica
Andamento: cursando

Re: Trigonometria ( Funções )

Mensagempor Tom » Qua Jul 07, 2010 00:39

Imagino que a pergunta seja a respeito das outras funções trigonométricas; então vamos calculá-las:

Se sec(x)=\dfrac{9}{4}, então cos(x)=\dfrac{1}{sec(x)}=\dfrac{4}{9}

Usando o Teorema Fundamental da Trigonometria, sen^2(x)+cos^2(x)=1, então sen^2(x)=\dfrac{65}{81} e assim, sen(x)=\pm\dfrac{\sqrt{65}}{9}

Mas, como x\le\dfrac{3\pi}{2} então sen(x)=\dfrac{\sqrt{65}}{9}


Como cossec(x)=\dfrac{1}{sen(x)}, temos que : cossec(x)=\dfrac{9\sqrt{65}}{65}

Além disso, tg(x)=\dfrac{sen(x)}{cos(x)}=\dfrac{\sqrt{65}}{4}

Por fim, como cotg(x)=\dfrac{1}{tg(x)}, então: cotg(x)=\dfrac{4\sqrt{65}}{65}


Eis as funções:

cos(x)=\dfrac{4}{9}

sen(x)=\dfrac{\sqrt{65}}{9}

tg(x)=\dfrac{\sqrt{65}}{4}

cotg(x)=\dfrac{4\sqrt{65}}{65}

cossec(x)=\dfrac{9\sqrt{65}}{65}

sec(x)=\dfrac{9}{4}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.