por manuoliveira » Dom Jun 20, 2010 22:08
(MACK) O conjunto imagem da função definida por y = cos (arc tg x) é:
Resposta: ]0; 1]
-
manuoliveira
- Usuário Parceiro

-
- Mensagens: 61
- Registrado em: Qui Abr 01, 2010 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por Molina » Qua Jun 23, 2010 21:12
Boa noite, Manu.
Vamos primeiramente interpretar esse problema como sendo y=f(g(x)).
Temos uma função composta.
Em funções compostas, a imagem de g(x) vira domínio de f(x) que por sua vez gera uma imagem de y.
Primeiro pegaremos a imagem de g(x), que no exercício é a imagem de arc tg x.
![Im=\left]-\frac{\pi}{2},\frac{\pi}{2}\right[ Im=\left]-\frac{\pi}{2},\frac{\pi}{2}\right[](/latexrender/pictures/f48013b17a90e57a5609e55f5bc3a69a.png)
Isso agora passa a ser o domínio da função f(x), ou seja, o domínio de cos x.
Usando o ciclo trigonométrico, veremos que os valores de cos x, com
![x \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[ x \in \left]-\frac{\pi}{2},\frac{\pi}{2}\right[](/latexrender/pictures/7eaf6d73baa86b616a8335e79345dfd6.png)
tem valor mínimo muito próximo de zero e valor máximo em 1.
Ou seja, a Imagem de y é
![]0,1] ]0,1]](/latexrender/pictures/c31170bf84938b298518616963fbac15.png)
Qualquer dúvida, informe!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Conjunto imagem
por Jonatan » Qui Jul 08, 2010 01:47
- 3 Respostas
- 2769 Exibições
- Última mensagem por Tom

Qui Jul 08, 2010 12:58
Funções
-
- Conjunto imagem
por leosniper » Ter Mai 08, 2012 18:11
- 1 Respostas
- 1189 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 12, 2012 14:42
Trigonometria
-
- [Integral Dupla] Imagem do conjunto S - Mudança de Variável
por neymeirelles » Qua Mai 23, 2012 21:14
- 2 Respostas
- 2562 Exibições
- Última mensagem por neymeirelles

Sex Mai 25, 2012 12:18
Cálculo: Limites, Derivadas e Integrais
-
- Conjunto vazio está dentro de outro conjunto vazio?
por JDomingos » Dom Jul 20, 2014 07:41
- 1 Respostas
- 2124 Exibições
- Última mensagem por DanielFerreira

Dom Jul 20, 2014 12:14
Conjuntos
-
- Período e imagem
por David Soni » Qua Nov 25, 2009 10:33
- 1 Respostas
- 3106 Exibições
- Última mensagem por Molina

Qua Nov 25, 2009 14:28
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.