• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dedução do Período do Pêndulo Simples]

[Dedução do Período do Pêndulo Simples]

Mensagempor Guga1981 » Seg Nov 27, 2017 01:22

Olá amigos!
Primeiramente parabéns pelo fórum! É um dos melhores da internet! Tanto que escolhi aqui para postar este questionamento.
Vamos lá...
Estudando pêndulo simples, cheguei ao entendimento que:
Sendo θ a abertura do Pêndulo Simples, nas extremidades do movimento (e, independente do valor de θ) a resultante é P.senθ, pois nas extremidades a
força tensora (T) se anula com P.cosθ, sobrando apenas P.senθ.

Por que razão e por qual motivo eu preciso considerar θ com pequenos ângulos se eu já tenho o valor da força resultante do pêndulo simples
(P.senθ) e o deslocamento percorrido (o deslocamento que no caso é o comprimento L do fio do pêndulo vezes o ângulo θ em radianos (x = L.θ). Pois aprendi que, numa secção circular de raio L e borda X, \theta = \frac{X}{L}).
Tendo a força resultante e o deslocamento, posso muito bem relacionar estes valores com a fórmula de força resultante do sistema massa mola que diz:

{F}_{elást.} = -k.x

(Onde k é a constante elástica e x é o deslocamento percorrido)

{F}_{R} = -k.x

No lugar de FR, eu coloco P.senθ

(que é a força resultante do pêndulo simples)

No lugar de x, eu coloco L.θ

(que é o deslocamento percorrido pelo pêndulo simples)

E assim tenho:
P.senθ = -k.-L.θ
(descolcamento negativo (-L.θ) porque deslocamento e força resultante tem sentidos opostos)

m.g.senθ = k.L.θ
k =\frac{m.g.sen{\theta}}{L.{\theta}}

Agora que eu já tenho a constante k do pêndulo simples, é só substituir na fórmula do período do sistema massa mola que diz:

T= 2π.\sqrt[]{\frac{m}{k}}

T= 2π.\sqrt[]{\frac{\frac{m}{1}}{\frac{m.g.sen{\theta}}{L.\theta}}}

T= 2π.\sqrt[]{\frac{m.L.\theta}{m.g.sen\theta}}

T= 2π.\sqrt[]{\frac{L.\theta}{g.sen\theta}}
E assim eu tenho o período do pêndulo simples para qualquer abertura θ! Estou errado?

Criei uma planilha (link abaixo) demonstrando que a fórmula é coerente com pequenos ângulos (ângulos até 10º) e com todos os outros possíveis:
https://drive.google.com/file/d/19e1oGc ... sp=sharing
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}