• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dedução do Período do Pêndulo Simples]

[Dedução do Período do Pêndulo Simples]

Mensagempor Guga1981 » Seg Nov 27, 2017 01:22

Olá amigos!
Primeiramente parabéns pelo fórum! É um dos melhores da internet! Tanto que escolhi aqui para postar este questionamento.
Vamos lá...
Estudando pêndulo simples, cheguei ao entendimento que:
Sendo ? a abertura do Pêndulo Simples, nas extremidades do movimento (e, independente do valor de ?) a resultante é P.sen?, pois nas extremidades a
força tensora (T) se anula com P.cos?, sobrando apenas P.sen?.

Por que razão e por qual motivo eu preciso considerar ? com pequenos ângulos se eu já tenho o valor da força resultante do pêndulo simples
(P.sen?) e o deslocamento percorrido (o deslocamento que no caso é o comprimento L do fio do pêndulo vezes o ângulo ? em radianos (x = L.?). Pois aprendi que, numa secção circular de raio L e borda X, \theta = \frac{X}{L}).
Tendo a força resultante e o deslocamento, posso muito bem relacionar estes valores com a fórmula de força resultante do sistema massa mola que diz:

= -k.x

(Onde k é a constante elástica e x é o deslocamento percorrido)

{F}_{R} = -k.x

No lugar de FR, eu coloco P.sen?

(que é a força resultante do pêndulo simples)

No lugar de x, eu coloco L.?

(que é o deslocamento percorrido pelo pêndulo simples)

E assim tenho:
P.sen? = -k.-L.?
(descolcamento negativo (-L.?) porque deslocamento e força resultante tem sentidos opostos)

m.g.sen? = k.L.?
k =\frac{m.g.sen{\theta}}{L.{\theta}}

Agora que eu já tenho a constante k do pêndulo simples, é só substituir na fórmula do período do sistema massa mola que diz:

T= 2?.\sqrt[]{\frac{m}{k}}

T= 2?.\sqrt[]{\frac{\frac{m}{1}}{\frac{m.g.sen{\theta}}{L.\theta}}}

T= 2?.\sqrt[]{\frac{m.L.\theta}{m.g.sen\theta}}

T= 2?.\sqrt[]{\frac{L.\theta}{g.sen\theta}}
E assim eu tenho o período do pêndulo simples para qualquer abertura ?! Estou errado?

Criei uma planilha (link abaixo) demonstrando que a fórmula é coerente com pequenos ângulos (ângulos até 10º) e com todos os outros possíveis:
https://drive.google.com/file/d/19e1oGc ... sp=sharing
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}