• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dedução do Período do Pêndulo Simples]

[Dedução do Período do Pêndulo Simples]

Mensagempor Guga1981 » Seg Nov 27, 2017 01:22

Olá amigos!
Primeiramente parabéns pelo fórum! É um dos melhores da internet! Tanto que escolhi aqui para postar este questionamento.
Vamos lá...
Estudando pêndulo simples, cheguei ao entendimento que:
Sendo θ a abertura do Pêndulo Simples, nas extremidades do movimento (e, independente do valor de θ) a resultante é P.senθ, pois nas extremidades a
força tensora (T) se anula com P.cosθ, sobrando apenas P.senθ.

Por que razão e por qual motivo eu preciso considerar θ com pequenos ângulos se eu já tenho o valor da força resultante do pêndulo simples
(P.senθ) e o deslocamento percorrido (o deslocamento que no caso é o comprimento L do fio do pêndulo vezes o ângulo θ em radianos (x = L.θ). Pois aprendi que, numa secção circular de raio L e borda X, \theta = \frac{X}{L}).
Tendo a força resultante e o deslocamento, posso muito bem relacionar estes valores com a fórmula de força resultante do sistema massa mola que diz:

{F}_{elást.} = -k.x

(Onde k é a constante elástica e x é o deslocamento percorrido)

{F}_{R} = -k.x

No lugar de FR, eu coloco P.senθ

(que é a força resultante do pêndulo simples)

No lugar de x, eu coloco L.θ

(que é o deslocamento percorrido pelo pêndulo simples)

E assim tenho:
P.senθ = -k.-L.θ
(descolcamento negativo (-L.θ) porque deslocamento e força resultante tem sentidos opostos)

m.g.senθ = k.L.θ
k =\frac{m.g.sen{\theta}}{L.{\theta}}

Agora que eu já tenho a constante k do pêndulo simples, é só substituir na fórmula do período do sistema massa mola que diz:

T= 2π.\sqrt[]{\frac{m}{k}}

T= 2π.\sqrt[]{\frac{\frac{m}{1}}{\frac{m.g.sen{\theta}}{L.\theta}}}

T= 2π.\sqrt[]{\frac{m.L.\theta}{m.g.sen\theta}}

T= 2π.\sqrt[]{\frac{L.\theta}{g.sen\theta}}
E assim eu tenho o período do pêndulo simples para qualquer abertura θ! Estou errado?

Criei uma planilha (link abaixo) demonstrando que a fórmula é coerente com pequenos ângulos (ângulos até 10º) e com todos os outros possíveis:
https://drive.google.com/file/d/19e1oGc ... sp=sharing
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59