• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Por Deus, ajuda aqui!

Por Deus, ajuda aqui!

Mensagempor zenildo » Ter Mai 31, 2016 09:50

Essa questão tentei fazer por Pitágoras e depois fiz algumas manipulaçoes com a relação fundamental. Contudo, não deu nada certo. Poderia esclarecer como devo fazer?
Anexos
Screenshot_2016-05-31-08-46-55.png
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 310
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: Por Deus, ajuda aqui!

Mensagempor Ana Cotrim » Qui Jun 02, 2016 05:50

Acho que e bom fazeres um esboco do grafico que te e dado ai como por exemplo desenhar o criculo trigonometrico e nesse caso destacar o 1 quadrante. E de reparar tambem que nessa regiao pede cos<1/5 logo (caso consiga usar calculadora) faca cos^-1(que se encontra na calculadora como uma tecla secundaria) e veja o valor em graus (de lembrar que neste caso a calculadora tem de estar em "deg") e pintar o grafico nessa zona. Assim consegue ver em que zona o teta se encontra e assim consegue resolver o exercicio.
Outra alternativa se conseguir vizualizar e so meter o cos^-1 na calculadora ver o valor e responder.
Espero ter sido esclarecedora.
Neste caso a mim esta a dar-me um angulo de 78 graus logo o teta esta entre 75 e 90.
Ana Cotrim
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jun 02, 2016 05:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Quimica
Andamento: cursando

Re: Por Deus, ajuda aqui!

Mensagempor adauto martins » Qui Jun 02, 2016 19:22

0\preceq cos\theta \prec (1/5)\Rightarrow arccos 0\preceq arccos(cos\theta) \prec arccos(1/5)\prec arccos(1/2)\Rightarrow 0\preceq \theta \prec 30...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Por Deus, ajuda aqui!

Mensagempor adauto martins » Sex Jun 03, 2016 11:55

uma correçao:
a funçao arcosseno no intervalo(0,\pi/2) é decrescente,logo:
0\preceq cos\theta \prec 1/5\prec 1/2\Rightarrow arcos0\succeq arc(cos \theta) \succ arcos(1/2)\Rightarrow 90\preceq \theta \prec 60...temos q. {sen\theta}^{2}+{(1/5)}^{2}=1\Rightarrow sen\theta=2.\sqrt[]{6}/5\simeq 0.98\succ 0.96 =sen(75)\Rightarrow sen\theta \succ sen75\Rightarrow arcsen\theta\prec arcsen75\Rightarrow \theta\prec75,logo resolvendo as inequaçoes teremos:60\prec \theta \prec 75...
ps-aqui usei os valores de sen75,q. pode ser calculado usando pitagoras,pra encurtar o caminho usei os valores calculados...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Por Deus, ajuda aqui!

Mensagempor DanielFerreira » Sáb Jun 04, 2016 23:37

Fazendo uso da calculadora, temos que \boxed{75^o < \theta < 90^o}. Pois,

\\ \cos \theta < \frac{1}{5} \\\\ \arccos \frac{1}{5} < \theta \\\\ \arccos 0,2 < \theta \\\\ 78,4^o < \theta \\\\ \theta > 78,4^o

Ana, repare que \cos 78^o > \frac{1}{5}. Portanto, o ângulo não pode ser 78º.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D