• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Por Substituição]

[Integral Por Substituição]

Mensagempor Douglas13 » Qua Nov 25, 2015 10:49

Gostaria de saber se alguém poderia me ajudar a resolver essa integral

unnamed.png
unnamed.png (2.39 KiB) Exibido 5104 vezes



De preferência passo a passo para que possa compreender.
Douglas13
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Nov 25, 2015 10:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral Por Substituição]

Mensagempor nakagumahissao » Qua Nov 25, 2015 13:45

\int \frac{2x^{4} e^{x^3 + 1} - e^{\frac{1}{x}}}{x^{2}} dx

Primeiramente vamos desmembrar a fração da seguinte maneira:

\frac{2x^{4} e^{x^3 + 1} - e^{\frac{1}{x}}}{x^{2}} = \frac{2x^{4} e^{x^3 + 1}}{x^{2}} - \frac{e^{\frac{1}{x}}}{x^{2}}

Pelas propriedades das Integrais podemos integrar cada uma das funções separadamente, sempre considerando x diferente de zero.

\int \frac{2x^{4} e^{x^3 + 1}}{x^{2}} dx - \int \frac{e^{\frac{1}{x}}}{x^{2}} dx \;\;\;\;[1]

Vamos resolver a primeira integral em [1] substituindo-se:

u = x^3 + 1 \Rightarrow du = 3x^{2} dx  \Rightarrow dx = \frac{dy}{3x^{2}}

\int \frac{2x^{4} e^{x^3 + 1}}{x^{2}} dx = \int 2x^{2} e^{x^3 + 1} dx = \int \frac{2x^{2} e^{u}}{3x^{2}} du =

\int \frac{2}{3} e^{u} du = \frac{2}{3} \int e^{u} du = \frac{2}{3} e^{u} =

= \frac{2}{3} e^{x^{3} + 1} + c_{1} \;\;\;\;\;[2]

Para a segunda integral em [1] acima, tomemos:

u = \frac{1}{x} \;\;\;\; [3]

u = x^{-1} \Rightarrow du = - x^{-2} dx \Rightarrow du = - \frac{1}{x^{2}} dx \Rightarrow

\Rightarrow dx = - x^{2} du \;\;\;[4]

Usando [3] e [4] na segunda integral de [1], teremos:

\int \frac{e^{\frac{1}{x}}}{x^{2}} dx =  \int \frac{e^{u}}{x^{2}} (-x^{2}) du = \int - e^{u} du = -\int e^{u} du =

= -e^{u} + c_{2} = -e^{1/x} + c_{2} \;\;\;\;\;[5]

Finalmente, juntando-se [2] e [5] obtidos acima em [1] e tomando-se cuidado com os sinais e combinando-se as constantes, tem-se:

\int \frac{2x^{4} e^{x^3 + 1} - e^{\frac{1}{x}}}{x^{2}} dx = \int \frac{2x^{4} e^{x^3 + 1}}{x^{2}} dx - \int \frac{e^{\frac{1}{x}}}{x^{2}} dx =

= \frac{2}{3} e^{x^{3} + 1} + c_{1} - \left( -e^{1/x} + c_{2} \right) =

= \frac{2}{3} e^{x^{3} + 1} + c_{1} + e^{1/x} - c_{2} = \frac{2}{3} e^{x^{3} + 1} + e^{1/x} + C

\Blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Integral Por Substituição]

Mensagempor nakagumahissao » Qua Nov 25, 2015 13:48

\int \frac{2x^{4} e^{x^3 + 1} - e^{\frac{1}{x}}}{x^{2}} dx

Primeiramente vamos desmembrar a fração da seguinte maneira:

\frac{2x^{4} e^{x^3 + 1} - e^{\frac{1}{x}}}{x^{2}} = \frac{2x^{4} e^{x^3 + 1}}{x^{2}} - \frac{e^{\frac{1}{x}}}{x^{2}}

Pelas propriedades das Integrais podemos integrar cada uma das funções separadamente, sempre considerando x diferente de zero.

\int \frac{2x^{4} e^{x^3 + 1}}{x^{2}} dx - \int \frac{e^{\frac{1}{x}}}{x^{2}} dx \;\;\;\;[1]

Vamos resolver a primeira integral em [1] substituindo-se:

u = x^3 + 1 \Rightarrow du = 3x^{2} dx  \Rightarrow dx = \frac{dy}{3x^{2}}

\int \frac{2x^{4} e^{x^3 + 1}}{x^{2}} dx = \int 2x^{2} e^{x^3 + 1} dx = \int \frac{2x^{2} e^{u}}{3x^{2}} du =

\int \frac{2}{3} e^{u} du = \frac{2}{3} \int e^{u} du = \frac{2}{3} e^{u} =

= \frac{2}{3} e^{x^{3} + 1} + c_{1} \;\;\;\;\;[2]

Para a segunda integral em [1] acima, tomemos:

u = \frac{1}{x} \;\;\;\; [3]

u = x^{-1} \Rightarrow du = - x^{-2} dx \Rightarrow du = - \frac{1}{x^{2}} dx \Rightarrow

\Rightarrow dx = - x^{2} du \;\;\;[4]

Usando [3] e [4] na segunda integral de [1], teremos:

\int \frac{e^{\frac{1}{x}}}{x^{2}} dx =  \int \frac{e^{u}}{x^{2}} (-x^{2}) du = \int - e^{u} du = -\int e^{u} du =

= -e^{u} + c_{2} = -e^{1/x} + c_{2} \;\;\;\;\;[5]

Finalmente, juntando-se [2] e [5] obtidos acima em [1] e tomando-se cuidado com os sinais e combinando-se as constantes, tem-se:

\int \frac{2x^{4} e^{x^3 + 1} - e^{\frac{1}{x}}}{x^{2}} dx = \int \frac{2x^{4} e^{x^3 + 1}}{x^{2}} dx - \int \frac{e^{\frac{1}{x}}}{x^{2}} dx =

= \frac{2}{3} e^{x^{3} + 1} + c_{1} - \left( -e^{1/x} + c_{2} \right) =

= \frac{2}{3} e^{x^{3} + 1} + c_{1} + e^{1/x} - c_{2} = \frac{2}{3} e^{x^{3} + 1} + e^{1/x} + C

\Blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [Integral Por Substituição]

Mensagempor Douglas13 » Qua Nov 25, 2015 21:13

Nakagumahissao Muito obrigado pela ajuda, não consegui resolver essa integral
Douglas13
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Nov 25, 2015 10:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}