• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria com módulo

Trigonometria com módulo

Mensagempor Fontelles » Qua Dez 23, 2009 22:02

Fiquei em dúvida nessa questão.
2sen²x + |senx| - 1 = 0
Não era só eu trabalhar |senx| = senx, se senx > 0 ou |senx| = -senx, se senx < 0
E então ficaria:
2sen²x + senx -1 = 0 e outra equação 2sen²x - senx - 1 = 0
Descubro a solução em cada uma e será essa a resposta final?
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Trigonometria com módulo

Mensagempor Fontelles » Qua Dez 23, 2009 22:05

No caso encontro senx = - 1 ou senx = 1/2 ou senx = 1 ou senx = -1/2
Esqueci de dizer que segue o intervalo [0, 2pi]
Sei que não bate com os valores de senx = -1 e senx = 1, mas queria saber o meu erro na procedência.
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Trigonometria com módulo

Mensagempor MarceloFantini » Qui Dez 24, 2009 04:18

Equação original:
2{sen}^{2}x + |{sen} x| -1 = 0;

Portanto, para senx \geq 0, temos:

2{sen}^{2}x + senx - 1 = 0

sen x = \frac{-1 \pm 3}{4}

sen x = \frac{1}{2} ou senx = -1 (Não convém, pois senx\geq0).

Para senx<0, temos:

2{sen}^{2}x - senx - 1 = 0

senx = \frac{+1 \pm 3}{4}

sen x = 1 (Não convém, pois senx<0) ou senx=-1/2.

Espero que tenha entendido.
Feliz Natal, e um abraço!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Trigonometria com módulo

Mensagempor Fontelles » Dom Dez 27, 2009 08:55

Poxa, esqueci dessa parte da propriedade.
Muito obrigado, Fantini!
Felicidades!
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59