• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria

Trigonometria

Mensagempor nan_henrique » Seg Jun 28, 2010 21:18

Determinar 0\leq x\leq2\pi que verifique
tg\left(x+\pi/4 \right)>0
Tnetei fazendo como arco duplo:
mas não sei o valor de tgx
nan_henrique
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Jun 24, 2010 18:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Trigonometria

Mensagempor Tom » Sex Jul 02, 2010 23:58

Usando a fórmula de soma de arcos para a função tangente, temos:

tg(x+\frac{\pi}{4})=\dfrac{tg(x)+tg(\frac{\pi}{4})}{1-tg(x).tg(\frac{\pi}{4})}=\dfrac{tg(x)+1}{1-tg(x)} , pois tg(\frac{\pi}{4})=1

Assim, se tg(x+\frac{\pi}{4})>0\rightarrow \dfrac{tg(x)+1}{1-tg(x)}>0

Estudando o sinal das funções f(x)=tg(x)+1 e g(x)=1-tg(x), ambas de domínio 0\le x\le 2\pi, observamos que :

Se tg(x)\le-1, então: f(x)\le0 e g(x)>0

Se -1<tg(x)<1, então: f(x)>0 e g(x)>0

Se tg(x)\ge1, então: f(x)>0 e g(x)\le0

Assim \dfrac{f(x)}{g(x)}>0, isto é, \dfrac{tg(x)+1}{1-tg(x)}>0 para -1<tg(x)<1

Finalmente, tg(x+\frac{\pi}{4})>0 para:

x\in ]\frac{3\pi}{4};\frac{5\pi}{4}[\cup ]\frac{7\pi}{4};\frac{\pi}{4}[
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}