• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações trigonometricas

Relações trigonometricas

Mensagempor yanagranhen » Qua Jun 23, 2010 22:37

Simplifique \frac{1 +{cos}^{2}a- {sen}^{2}a}{sen2a}
a) -1
b) tg a
c) cotg a
d) cossec a
e) sec a

Já tentei utilizar todas as relações trigonométricas, no final sobra como resposta cossec 2a + cotg 2a e não sei o que fazer daí em diante!
Me ajudem!
yanagranhen
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jun 17, 2010 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia florestal
Andamento: cursando

Re: Relações trigonometricas

Mensagempor Lucio Carvalho » Qua Jun 23, 2010 23:03

Olá yanagranhen,
Apresento a seguinte ajuda:

\frac{1+{cos}^{2}a-{sen}^{2}a}{sen(2a)}=\frac{{sen}^{2}a+{cos}^{2}a+{cos}^{2}a-{sen}^{2}a}{2.sen(a).cos(a)}=\frac{2{cos}^{2}a}{2.sen(a).cos(a)}=\frac{cos(a)}{sen(a)}=cotg(a)

Espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Relações trigonometricas

Mensagempor yanagranhen » Qua Jun 23, 2010 23:20

Mas
sen²a + cos²a = 1
cos²a = 1 - sen²a
ou
sen²a = 1 - cos²a

e como você substituiu 1 + cos²a por sen²a?
yanagranhen
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jun 17, 2010 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia florestal
Andamento: cursando

Re: Relações trigonometricas

Mensagempor MarceloFantini » Qui Jun 24, 2010 08:18

Ele não substituiu 1+cos^2 a por sen^2 a. Ele substituiu 1 por sen^2 a + cos^2 a.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}