• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[aplicação dos reais] círculo trigonométrico

[aplicação dos reais] círculo trigonométrico

Mensagempor Ederson_ederson » Qua Ago 26, 2015 11:55

Bom dia.

estou tentando resolver uma questão e não sei se está certo e também não sei finalizar.

"Resolvendo a equação 3(1 - cos x) = sen^2 x, encontramos para solução:

a) x = k \Pi
b) x = k2\Pi + \Pi
c) x = k2\Pi + \Pi/2
d) x = k2\Pi
e) n.d.a.

todas as alternativas tem k pertence aos inteiros"

Eu nem sei por onde começar.

Me disseram que eu posso substituir o cos x por k e desenvolver a conta, mas por que eu faria essa substituição? Isso existe?

Muito obrigado! :y:
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [aplicação dos reais] círculo trigonométrico

Mensagempor Cleyson007 » Qua Ago 26, 2015 18:47

Olá Ederson!

Da Relação Fundamental da Trigonometria sabemos que: sen² x + cos² x = 1

Fazendo cosx = k, temos que:

sen² x = 1 - k²

3 (1-k) = 1 - k²

k² - 3k + 3 - 1=0

k² - 3k + 2 = 0

Resolvendo a equação acima chegamos em k = 1

Como cosx = k --> cosx=1 ; x=0º

Logo,

x = 2kpi, k E z

Caso queira conhecer melhor o nosso trabalho segue o contato: viewtopic.php?f=151&t=13614

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [aplicação dos reais] círculo trigonométrico

Mensagempor Ederson_ederson » Qui Ago 27, 2015 07:50

Cleyson007 escreveu:Olá Ederson!

Da Relação Fundamental da Trigonometria sabemos que: sen² x + cos² x = 1

Fazendo cosx = k, temos que:

sen² x = 1 - k²

3 (1-k) = 1 - k²

k² - 3k + 3 - 1=0

k² - 3k + 2 = 0

Resolvendo a equação acima chegamos em k = 1




Olá, bom dia!!!

Muito obrigado pela ajuda! :-D

Como cosx = k --> cosx=1 ; x=0º

Logo,

x = 2kpi, k E z

Caso queira conhecer melhor o nosso trabalho segue o contato: viewtopic.php?f=151&t=13614

Abraço
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}