por Ederson_ederson » Qua Ago 26, 2015 11:55
Bom dia.
estou tentando resolver uma questão e não sei se está certo e também não sei finalizar.
"Resolvendo a equação 3(1 - cos x) = sen^2 x, encontramos para solução:
a) x = k
b) x = k2

+

c) x = k2

+

/2
d) x = k2

e) n.d.a.
todas as alternativas tem k pertence aos inteiros"
Eu nem sei por onde começar.
Me disseram que eu posso substituir o cos x por k e desenvolver a conta, mas por que eu faria essa substituição? Isso existe?
Muito obrigado!

-
Ederson_ederson
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Ter Jun 23, 2015 19:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Cleyson007 » Qua Ago 26, 2015 18:47
Olá Ederson!
Da Relação Fundamental da Trigonometria sabemos que: sen² x + cos² x = 1
Fazendo cosx = k, temos que:
sen² x = 1 - k²
3 (1-k) = 1 - k²
k² - 3k + 3 - 1=0
k² - 3k + 2 = 0
Resolvendo a equação acima chegamos em k = 1
Como cosx = k --> cosx=1 ; x=0º
Logo,
x = 2kpi, k E z
Caso queira conhecer melhor o nosso trabalho segue o contato:
viewtopic.php?f=151&t=13614Abraço
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Ederson_ederson » Qui Ago 27, 2015 07:50
Cleyson007 escreveu:Olá Ederson!
Da Relação Fundamental da Trigonometria sabemos que: sen² x + cos² x = 1
Fazendo cosx = k, temos que:
sen² x = 1 - k²
3 (1-k) = 1 - k²
k² - 3k + 3 - 1=0
k² - 3k + 2 = 0
Resolvendo a equação acima chegamos em k = 1
Olá, bom dia!!!
Muito obrigado pela ajuda!
Como cosx = k --> cosx=1 ; x=0º
Logo,
x = 2kpi, k E z
Caso queira conhecer melhor o nosso trabalho segue o contato:
viewtopic.php?f=151&t=13614Abraço
-
Ederson_ederson
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Ter Jun 23, 2015 19:04
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Círculo trigonométrico
por Ananda » Sex Fev 29, 2008 10:56
- 8 Respostas
- 7329 Exibições
- Última mensagem por Ananda

Seg Mar 03, 2008 17:51
Trigonometria
-
- Círculo trigonométrico
por Ananda » Qui Mar 06, 2008 23:00
- 1 Respostas
- 3604 Exibições
- Última mensagem por Neperiano

Dom Set 04, 2011 22:07
Geometria
-
- Círculo Trigonométrico
por caiolasagno » Seg Abr 13, 2009 21:18
- 1 Respostas
- 2241 Exibições
- Última mensagem por Marcampucio

Seg Abr 13, 2009 21:29
Trigonometria
-
- Área, círculo trigonométrico, equação (UFU)
por Ananda » Qui Mar 06, 2008 11:51
- 6 Respostas
- 8954 Exibições
- Última mensagem por Ananda

Qui Mar 06, 2008 17:48
Trigonometria
-
- [Numeros Complexos] : No circulo trigonometrico?
por Priscilamoraes307 » Sex Jun 01, 2012 20:35
- 3 Respostas
- 2449 Exibições
- Última mensagem por Russman

Sáb Jun 02, 2012 19:54
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.