• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - Problema

Trigonometria - Problema

Mensagempor RodriguesBruno » Qui Mai 22, 2014 18:26

Olá, estou com certa dificuldade no exercício em anexo.
Neste exercício, tentei usar a fórmula Tgx=\frac{Senx}{Cosx} e {Sen}^{2}x+{Cos}^{2}x=1 em que:

Tgx=Senx/Cosx

-3=Senx/Cosx

Senx=-3Cosx

Agora substituindo na fórmula 2:

{Sen}^{2}x+{Cos}^{2}x=1

{3Cos}^{2}x+{Cos}^{2}x=1

{4Cos}^{2}x=1

{Cos}^{2}x=\frac{1}{4}

Cosx=\sqrt[2]{\frac{1}{4}}

Porém, esse não é o resultado e não sei nenhum outro modo de realizar esse exercício, por isso preciso de ajuda e agradeço desde já pela atenção.
Obs.: GABARITO A
Bruno.
Anexos
Trig..PNG
Trig..PNG (8.2 KiB) Exibido 1957 vezes
RodriguesBruno
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 20, 2014 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Trigonometria - Problema

Mensagempor RonnieAlmeida » Qui Mai 22, 2014 19:17

Vamos lá!

Tgx = -3

\frac{senx}{cosx} = -3

senx = -3cosx

Elevando os dois membros ao quadrado:

{sen}^{2}x = -{(3)}^{2}{cos}^{2}x (1)

Por definição, temos:

{sen}^{2}x + {cos}^{2}x = 1

{sen}^{2}x = 1 - {cos}^{2}x (2)

Então, substituindo (2) em (1):

1 - {cos}^{2}x = 9{cos}^{2}x

1 = 10{cos}^{2}x

\frac{1}{10} = {cos}^{2}x

Após tirarmos as raízes dos dois membros, chegaremos em:

cosx = + \sqrt[2]{10}/10 ou cosx = - \sqrt[2]{10}/10

Se x pertence ao 4º quadrante, então seu cosseno é obrigatoriamente positivo...

Portanto cosx = + \sqrt[2]{10}/10

Alternativa A
RonnieAlmeida
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mai 22, 2014 16:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Trigonometria - Problema

Mensagempor RodriguesBruno » Sex Mai 23, 2014 15:30

Fico muito grato por sua ajuda.
RodriguesBruno
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mai 20, 2014 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.