• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão - Razões Trig.

Expressão - Razões Trig.

Mensagempor Apotema » Ter Nov 24, 2009 08:02

O valor desta expressão
sen\frac{\pi}{2}.cos\pi+tg2\pi.sec\frac{\pi}{4}
eu devo substituir pi por 90°? ou melhor, sen pi/2 substituo por 0? e assim por diante?
Apotema
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Nov 18, 2009 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Expressão - Razões Trig.

Mensagempor thadeu » Ter Nov 24, 2009 11:39

Você deve lembrar dos valores dos senos e cossenos dos ângulos "mais usados" nos exercícios básicos:

sen2 \pi=0\,\,\,\,e\,\,\,cos 2 \pi=1\\sen \pi=0\,\,\,e\,\,\,cos \pi=-1\\sen \frac{\pi}{2}=1\,\,\,e\,\,\,cos \frac{\pi}{2}=0\\sen \frac{\pi}{3}=\frac{\sqrt{3}}{2}\,\,\,e\,\,\,cos \frac{\pi}{3}=\frac{1}{2}\\sen \frac{\pi}{4}=cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}\\sen \frac{\pi}{6}=\frac{1}{2}\,\,\,e\,\,\,cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}

Então, usando esses valores acima, teremos:

tg 2 \pi=\frac{sen 2 \pi}{cos 2 \pi}=\frac{0}{1}=0

sec \frac{\pi}{4}=\frac{1}{cos \frac{\pi}{4}}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}

Substituindo na expressão:

sen \frac{\pi}{2}\,.\,cos \pi+tg 2 \pi\,.\,sec \frac{\pi}{4}=(1)\,.\,(-1)+\,(0)\,.\,(\sqrt{2})=-1
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}